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a b s t r a c t

A key factor that limits the practical implementation of polymer gels is low gel toughness. Here, we
present coarse-grained molecular dynamics simulations of the effects of solvent molecular weight on the
toughness of entangled and non-entangled polymer gels in the ballistic impact regime. Our results
demonstrate that higher molecular weight solvents enhance gel toughness, and that mechanical prop-
erties including strength and toughness can be influenced by bond scission. Further, we find a
remarkable two-step gel fracture mechanism on the molecular level: network chains undergo scission
first (and well before fracture), followed by scission of solvent chains. For strain rates greater than inverse
relaxation time of the solvent, long, highly entangled solvent chains provide fracture resistance even
after the network chains break by effectively increasing the number of chains that must be broken as a
crack propagates.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Polymer gels formed by mixing chemically crosslinked polymer
networks with solvent molecules exhibit exquisitely tailorable
rheological and nonlinear-mechanical properties. Varying the
lengths and concentrations of network and solvent chains, as well
as chain branching, allows one to vary the gels’ linear rheology as
well as the fracture toughness [1e3]. However, the practical utility
of polymer gels for industrial applications is limited by their low
toughness. The need to develop strong and tough gels has inten-
sified interest in understanding the fundamental aspects of their
failure mechanisms. Several efforts have been made to enhance
mechanical properties of polymer gels including strength, tough-
ness, and durability [4e7]. In particular, recent successful efforts to
strengthen gels have employed thermal cycling during processing
[4], creation of a double network [5], and synthesizing inorganic-
organic hybrid materials [6]. However, many gels remain me-
chanically fragile. While most gel formulations exploit small
boratory, Aberdeen Proving
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molecule solvents such as water or common polymer plasticizers,
recent work [7] has demonstrated that both the linear rheological
properties and ultimate (fracture) toughness of the gel can be
improved by utilizing polymeric solvents rather than small mole-
cules. Polymeric solvents of high molecular weight entangle with
the crosslinked polymer network, enhancing the toughness of the
gels relative to non-entangled solvents [7]. The mechanical
response of these gels ranging from the linear-viscoelastic to frac-
ture regimes arises from the combined contribution of the cross-
linked polymer network and the entangled solvent. For example,
at strain rates much greater than the inverse relaxation times of the
entangled network, the effects of (transient) physical entangle-
ments and (permanent) chemical cross-links are qualitatively
similar e both constrain long-range conformational rearrange-
ments of the strands of the polymer network e whereas at lower
strain rates, physical entanglements can slip when the network is
strained.

Recent computational and experimental research has provided
insight into the role of physical entanglements on the mechanical
performance of polymer gels with solvent molecular weights large
enough to entangle with the polymer network [8]. This work has
demonstrated that at moderate to high strain rates, i.e. when the
inverse strain rate is smaller or comparable with the reptation time
of the solvent, entanglements dominate the stress and the time-
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Fig. 1. Schematic representation of the modeled systems. Chains of polymer network
and solvent are shown with red and blue colors, respectively. Red dots and dashed
circles represent chemical cross-links and physical entanglements, respectively. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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dependent elastic modulus of polymer gels with high molecular
weight. In particular, varying the molecular weight of polymer
solvents can be used to tune the rate dependent modulus of poly-
mer gels [8]. However, despite the importance of the gels for in-
dustrial, military and biomedical applications [1,9e11] and many
theoretical and experimental studies of gel fracture [12e15], there
is still comparatively little understanding about the conditions and
mechanisms of gel fracture on the molecular level, and it is very
difficult for experiments to isolate microscopic fracture mecha-
nisms, e.g. the interplay between chain pullout and scission.

The toughness of polymer is governed by a competition be-
tween homogeneous, viscoelastic deformation and various inho-
mogeneous fracture mechanisms [16]. Since the crack tip zone
shows very large deformations in soft solids, accurate description of
nonlinear material response is critical for examining gel fracture
[17,18]. Even when extreme care is taken, most polymer samples
contain various imperfections such as cracks, notches, and extrinsic
heterogeneities that concentrate stress and strain and increase
local strain rates, all of which localize the macroscopic fracture
process. Defects such as surface cracks that govern fracture on
larger scales are beyond the scope of the present study. However, it
is important to understand these local processes in terms of the
“intrinsic” mechanical response of flaw-free samples under tensile
stress. This intrinsic response is best studied by analytic work as
well as numerical simulation. Finite-element methods [19,20] can
treat fracture surfaces, but typically make many assumptions about
the underlying microscale mechanisms. Molecular simulations can
elucidate such mechanisms for a wide variety of relevant parame-
ters such as strand polydispersity, temperature, strain rate, inter-
monomer interaction strength, chain flexibility, composition,
molecular weight, cross-link spacing and entanglement density.
This allows isolation of the relative effects of the many competing
molecular-scale factors present in experiments. In contrast to the
wealth of recent simulations of fracture in neat and elastomeric
systems in the glassy state [21e30], there have been relatively few
simulations of gel fracture [30].

Fracture of polymer gels occurs via two main molecular mech-
anisms: chain disentanglement or pullout and chain scission. The
competition between these depends on the molecular weight of
the polymer chains, the number of entanglements along each
chain, monomerescale interactions, chain extension, network
connectivity, and the rate of deformation. Sides et al. [30] studied
the adhesion between an entangled polymer melt and a polymer-
brush-coated substrate over a wide range of temperatures span-
ning the glass transition. They found that the fracture energy cor-
relates well with the degree of (melt) chain scission. As expected,
they found that chain scission increases with increasing melt mo-
lecular weight; however, they did not find any substantial differ-
ence in pullout/scissionmechanisms between uncross-linkedmelts
and cross-linked networks. It should be noted that the strain rates
studied by Sides et al. were faster than the inverse Rouse time s�1

R ,
where sR is the average time required for a chain to crossover from
Rouse-like to reptation dynamics [30].

In this work, we focus on the mechanical response of entangled
polymer gels at high strain rates (i.e. of order s�1

R ) characteristic of
high velocity penetrating events, and particularly on determining
the role of entanglements in controlling this response through
fracture. We compare this response to that of gels containing short-
chain solvents that do not entangle with the network. Our results
show a remarkable two-step fracture mechanism for polymer gels
containing entangled solvents. Network chains undergo scission
first, well before fracture and before scission of solvent chains ini-
tiates. This is followed by scission of solvent chains if they are long
enough. Our results show that after the network begins to break,
long entangled solvent chains provide an additional “backup”
fracture resistance by effectively increasing the number of chains
that must be broken before a crack can propagate. These findings
are in agreement with experimental observations [7] that entan-
gled solvents play a critical role in controlling the nonlinear me-
chanical response of polymer gels.

2. Model and methods

2.1. Polymer model

We perform molecular dynamics simulations of polymer melts,
networks and gels using the KremereGrest bead-springmodel [31].
Periodic boundary conditions are applied along all three directions
of initially cubic simulation cells. All monomers have mass m and
the pair interaction between topologically nonconnected mono-
mers is described by the standard truncated LennardeJones (LJ)
pair potential:

ULJðrÞ ¼ 4u0
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All quantities are expressed in terms of the intermonomer
binding energy u0, monomer diameter a and characteristic time
sLJ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ma2=u0

p
. The LJ potential cutoff is chosen to be rc ¼ 2.5a;

this value of rc produces a glass transition temperature Tg w 0.5u0/
kB [32], i.e. about half the temperature at which our systems are
deformed (T ¼ 1.0u0/kB). Ongoing room-temperature experiments
on PDMS gels, which will be reported elsewhere, possess a ratio Tg/
Troom that is similar to our modeled Tg/T.

Topologically bound monomers interact via the sum of the
purely repulsive LJ potential (rc ¼ 21/6a) or so-called Weekse
ChandlereAndersen UWCA and a quartic potential Uq [23,24]. The
quartic potential

UqðrÞ ¼ ðr � Dr � b1Þðr � Dr � b2Þðr � DrÞ2 þ U0; (2)

allows bond breaking and prevents unbroken chains from crossing.
This potential has a smooth cutoff at r ¼ Dr which preserves force



Table 2
The densities of networkenetwork, rAAe , solventesolvent, rBBe , and network-solvent
entanglements, rABe , and the total entanglement density,rtote . Densities are given in
units of the inverse monomer volume a�3.

NA NB rtote rAAe rBBe rABe

250 0 0.0171 0.0171 0 0
250 4 0.0051 0.0051 0 0
250 500 0.0184 0.0055 0.0051 0.0078
250 1000 0.0179 0.0057 0.0051 0.0071
500 0 0.0178 0.0178 0 0
500 1000 0.0177 0.0053 0.0048 0.0076
0 500 0.0167 0 0.0167 0
0 1000 0.0172 0 0.0172 0
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continuity. The parameters in Uq(r) were determined by fitting it to
the bond force with the finite extensible nonlinear (FENE) potential
at the first zero and the minimum. The potential parameters are
k ¼ 1434.3u0/a4, b1 ¼ �0.7589a, b2 ¼ 0.0, Dr ¼ 1.5a and
U0¼ 67.2234u0 [24]. The ratio between the forces at which covalent
and noncovalent bonds break, about 590, is a reasonable approxi-
mation for a coarse-grained polymermodel [24], and themodel has
been used recently to study fracture [21,22,24]. In our simulations,
broken bonds are not allowed to reform.

Here, we consider two types of constituents, polymer species A
and B. Both polymers are composed of monomers of the same type
and have linear topology. Polymer A forms a chemically crosslinked
polymer network and polymer B is composed of free solvent chains.
Systems composed of both types of polymers (A and B) are polymer
gels. We also study pure-network and pure-solvent systems
composed respectively only of polymer A or polymer B. In all
simulated polymer gels, the volume ratio of network chains is 0.5.
Network chains are always fully entangled (as will be shown
below), with various arrangements of networkenetwork, solvente
solvent and network-solvent entanglements (Fig. 1).

Physical entanglements represent additional “topological” con-
straints that contribute to the change of entropy with deformation.
Networkenetwork entanglements are permanently trapped during
the course of the cross-linking process and affect the chains’
configurational entropy to the same degree as cross-links, while
network-solvent and solventesolvent entanglements contribute an
entropic term only when they cannot fully relax during deforma-
tion. Table 1 lists the lengths of polymer chains for the systems
studied here. The total number of coarse-grained particles in all our
simulations is Ntot z 250,000, with exception of non-crosslinked
melt of NB ¼ 1000. For this case, we use a larger system of
Ntot z 500,000 particles.

2.2. Melt equilibration and network preparation

The simulations are initiated by producing well-equilibrated,
uncrosslinked polymer melts. Equilibration of entangled poly-
mers is nontrivial even for coarse-grained systems because of the
slow reptation dynamics exhibited by high molecular weight
chains. A detailed description of the equilibration algorithm
employed in this study is published elsewhere [33]. The main
features of this algorithm are: (i) generation of initial chain con-
figurations with large-scale configurations that are as close as
possible to equilibrated configurations, and (ii) allowing chains to
pass through each other to speed up the polymer dynamics.

After equilibrating the uncrosslinked melts, end-linked polymer
networks (polymer A) were prepared by cross-linking the linear
chains with cross-linkers containing four-functional groups. Net-
works are generated by curing well-equilibrated melts of reactant
mixture that are composed of M chains of four-arm stars with arm
Table 1
Number of coarse-grained particles in a
single chain of the network strandNA and
solvent polymer NB in simulated polymer
systems.

NA NB

250 0
250 4
250 500
250 1000
500 0
500 1000
0 500
0 1000
length Na ¼ 1, and 2M linear precursor chains of Np ¼ 246. Curing is
done in the presence of the nonreactive solvent chains (polymer B).
In this stage, the pair interaction between nonbonded particles is
described by the excluded volume (Weeks-Chandler-Andersen)
potential UWCA, and topologically bound monomers interact ac-
cording to the standard FENE/Lennard-Jones bonded potential [33].
The network is dynamically formed during NVT simulations with
temperature controlled by a Langevin thermostat with damping
time 1.0 sLJ. The end particles of the stars and linear chains react,
resulting in a network structure. FENE bonds are formed in the
simulationwhen the separation between ends of a star and a linear
chain is less than 1.2a. To exclude loop formation, the ends of the
linear chains are constrained to react with two different stars. To
increase the curing rate, attractive LJ interactions (rc ¼ 2.5a) are
included between end monomers of the stars and of the linear
chains. The curing proceeds until at least 90% of all possible bonds
are made (i.e. the cure ratio reaches at least 90%). After network
preparation, the LJ potential cutoff is changed to rc ¼ 2.5a and the
systems are equilibrated at zero hydrostatic pressure, yielding an
equilibrium monomer number density r ¼ 0.89 a�3.
2.3. Deformation

After network preparation, uniaxial-stress tensile deformation
is imposed. A constant true strain rate _e ¼ 10�5s�1

LJ is applied to the
simulation cell, where e ¼ ln(l) and l ¼ Lz/L0z . The employed strain
rate is much higher than typical experimental strain rates, and
corresponds to ballistic impacts. We find, however, that it is still
sufficiently slow that segmental contributions to stress are small,
and stressestrain curves match the predictions of linear and
nonlinear rubber elasticity [34]. A Langevin thermostat with
damping time 1.0 sLJ is used to maintain T¼ 1.0 and a NoseeHoover
barostat with damping time 100sLJ is used to maintain zero pres-
sure along the transverse directions. The MD time step Dt is
0.0075sL. All simulations were executed using LAMMPS [35,36].
Finally, an additional simulation at higher strain rate of
_e ¼ 10�4s�1

LJ is also performed to check the effect of strain rate; the
higher rate corresponds to a more viscous regime.
3. Results and discussion

3.1. Topological analysis of the initial configurations

To perform topological analysis of our gels, the numbers of to-
pological entanglements per chain hZi were directly enumerated
using the Z1 code [37,38]. Z1’s geometrical contour-length reduc-
tion algorithm provides the number of interior “kinks” Z corre-
sponding to positions where two primitive paths intersect. Here
Zfhneiwhere ne is number of rheological entanglements per chain.
It has been shown that the number of rheological entanglements,



Y.R. Sliozberg et al. / Polymer 55 (2014) 2543e25512546
ne, is about half the number of topological entanglements, i.e.
hZi z 2ne [39].

In Table 2, we report the densities of networkenetwork, rAAe ,
solventesolvent, rBBe , and network-solvent entanglements, rABe , as
well as the total entanglement density,rtote . The entanglement
density, which is the number of topological entanglements per unit
volume is computed as rke ¼ hZkiMk=V , where M is a number of
chains and subscript k corresponds to AA, BB or total. Assuming that
all entanglements are binary, the cross-term is found from
rABe ¼ rtote � ðrAAe þ rBBe Þ.

With the exception of the gel containing low molecular weight
solvent, NB ¼ 4, values of rtote are approximately equal for all sys-
tems. These values are close to the expected valuertote ¼ 0:0182
computed from rtote ¼ r=Ne, where the topological entanglement
length, Ne z 49, is computed using the “M-kink” estimator [40].

Since all of the gels have the same network fraction 4 ¼ 0.5, the
values of the density of trapped entanglements, rAAe are also very
similar for all gels, as a result of network chain dilution. This dilu-
tion of the network by the polymer solvent leads to a reduction in
the number of trapped entanglements according to rAAe ¼ rbulke 4a,
where rbulke is the entanglement density in bulk, 4 is the volume
fraction of solvent polymer, and a depends on the solvent. We
found a z 1.75 which is within the range a ¼ 1.7�2.7 observed in
experimental studies [41,42]. Our results are in agreement with
those of Mrozek et al. [7]. The authors also observed that solvent
molecular weight, Mw does not impact network structure. The gels
were formed with solvent of varying Mw, then solvent was
extracted and resulted networks exhibited same frequency-
dependent rheology [7].

Table 3 shows the number of kinks for the polymer gels and pure
network/non-crosslinked polymers.We report hZAAi, the number of
kinks per A chain created by chains of polymer A, the number of
kinks per A and B chain hZAi and hZBi from hZAi ¼ ðrAAe þ rABe ÞV=MA
and hZBi ¼ ðrBBe þ rABe ÞV=MB, respectively, where MA and MB are
respectively the number of chains of polymer A and B. The total
numbermean of kinks per chain is hZtoti � 5 for all polymer systems
with exception of the “dilute” (NB ¼ 4) gel, indicating these systems
should all be in the well-entangled regime, i.e. their mechanical
properties are expected to be dominated by entanglements and
entanglement relaxation during deformation. The dilute gel has
hZtoti z 3 and is anticipated to show behavior characteristic of the
entanglement-onset regime.

From Table 3, one can see that (as expected) increasing solvent
chain length does not affect the number of entanglements per
network strand, hZAi, but that the number of entanglements per a
solvent chain, hZBi scales linearly with NB. For example, the two gels
NA ¼ 250 NB ¼ 500 and NA ¼ 250 NB ¼ 1000 have approximately
equal hZAi, but hZBi is about twice larger for the gel with NB ¼ 1000.
We expect and verify below that increased entanglement between
solvent and networks chains improves the toughness of the
simulated gels by increasing the number and density of chains that
must undergo scission as the crack propagates during incipient
fracture.
Table 3
The mean number of kinks,hZi for polymer gels.

NA NB hZAAi hZAi hZBi
250 0 5.00 5.00 0
250 4 2.91 2.91 0
250 500 3.06 7.41 14.50
250 1000 3.19 7.12 27.38
500 0 9.99 9.99 0
500 1000 5.98 14.44 27.91
0 500 0 0 9.63
0 1000 0 0 19.29
3.2. Stress-strain response in uniaxial tension

Stress-strain curves for all systems are given in Fig. 2; these are
plotted as a function of both the stretch ratio l ¼ L/L0 and the
GreeneLagrange strain g(l)¼ l2�1/l. Stress-strain curves are linear
in g(l) for small values of l, showing that our systems display
mechanical response consistent with linear rubber elasticity in this
regime, i.e. the true stress in uniaxial deformation is s ¼ G(l2�1/l),
where G is the shear modulus [34]. For larger l, curves show
nonlinear behavior that arises from entropic depletion of available
chain configurations when the inter-crosslink distance becomes
comparable to the inter-crosslink chain contour length [43]. All
simulated polymers exhibit qualitatively similar behavior: the
strain hardening is followed by fracture at the stretch ratio lfrac
(strain εfrac) corresponding to maximal stress. For the majority of
our systems, stress persists beyond lfrac and does not go to zero
during the simulations because the solvent and broken network
entanglements are not fully relaxed for the employed strain rate, i.e.
“chain pullout” is incomplete. The particle-based molecular dy-
namics method used in this paper does not allow for performing
simulations with lower strain rates due to current computational
limitations. Results are truncated at l ¼ 40 for all polymer system,
since the simulation-cell lateral dimensions become too small at
larger strains. The stressestrain curve of the uncrosslinked melt of
NB ¼ 1000 is truncated at l ¼ 50, since we use a larger simulation
cell for this system.
Fig. 2. True stress s vs. (a) stretch ratio l, (b) the GreeneLagrange strain g(l) ¼ l2�1/l
for uniaxial tension at the true strain rate _e ¼ 10�5s�1

LJ . The inset to panel (b) shows a
zoomed-in region of the same stressestrain curves.



Fig. 3. (a) Total number of broken bonds, Nf
b , (b) number of broken network strands,

Mf
A, and (c) number of broken strands normalized by the initial number of strands,

Mf
A=M

0
A, as a function of the stretch ratio l for the pure networks (NB ¼ 0) at a true

strain rate _e ¼ 10�5s�1
LJ .
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As expected, the pure-network systems show the largest
rubber-elastic modulus (steepest rise of stress with strain) since
they are the most topologically constrained, i.e. the chemical-
crosslink and trapped-entanglement networks are both forced to
deform affinely. The initial slopes of the curves vs. the Greene
Lagrange strain g(l) are 0.0127 u0/a3 and 0.0113 u0/a3 for the net-
works withNA¼ 250 andNA¼ 500, respectively. These values are in
excellent agreement with the values of the equilibrium modulus
(respectively 0.010 u0/a3 and 0.009 u0/a3 for the networks with
NA ¼ 250 and NA ¼ 500) expected from tube theory [44] and
measured in many experiments. The equilibrium shear modulus is
computed from G ¼ 4/5rkBT/Ne where Ne is the “rheological”
entanglement length, i.e. about twice the “topological” entangle-
ment length Nx calculated by Z1 analysis [44]. Alternatively, the
equilibrium modulus can be computed from G ¼ 4/5rckBT, where
the total topological constraint density is the sum of the crosslink
and entanglement densities, rc ¼ rx þ re, and values of rc are equal
to 0.0206 a�3 and 0.0196 a�3 for the networks with NA ¼ 250 and
NA ¼ 500, respectively. These systems also exhibit the smallest
fracture strain. lfracz 13.5 and 15.0 for networkswithNA¼ 250 and
NA ¼ 500, respectively. Since no chain-scale relaxation can occur,
fracture on the macroscale must occur through bond scission.
Interestingly, the stressestrain curves of both network are com-
parable at l< lfrac and notably differ at l> lfrac, where the stress for
the network with NA ¼ 500 decreases significantly slower than that
for the network with NA ¼ 250. The longer “tail” of stress for the
network with NA ¼ 500 is explained by delayed pull-out of longer
entangled dangling chains. The mechanical properties of entangled
polymer networks at low strain rates are sensitive to defects in the
network micro-structure [45,46].

In contrast, the system with no crosslinks (e.g. NA ¼ 0,
NB ¼ 1000) is the most ductile and exhibits the largest fracture
strain. This is also expected since this system can relax on all scales
at sufficiently low strain rates, and fracture can also occur through
chain pullout. Finally, we also present results for another entangled
(Z w 10) non-crosslinked melt with shorter chains (NA ¼ 0,
NB ¼ 500) that shows very different behavior arising from the fact
that the strain rate is less than the inverse Rouse time (cf. Section
3.4) and entanglements can relax significantly over the course of
the deformation. This system exhibits viscous flow rather than
fracture.

50/50 solvent/network systems show intermediate behavior,
with a maximum fracture stress that decreases with decreasing
solvent chain length. For example, the most ductile, “softest” sys-
tem has NA ¼ 250 and NB ¼ 4. This is expected since short solvent
chains can both relax conformations and diffuse very quickly; at the
studied strain rate, the system behaves essentially like a diluted
network with crosslinks and entanglements only between network
chains. Consequently, the measured elastic modulus of this gel is
also in good agreement with the value of Ge, 0.0042 u0/a3 and
0.0037 u0/a3 for the measured and expected values, respectively.
The elastic moduli of the entangled gels (NA ¼ 250 or 500) do not
differ substantially from the expected values; moduli computed
from rc ¼ rtote þ rx for two gels with NB ¼ 1000 (NA ¼ 250 and 500)
and gels with NA ¼ 250 and NB ¼ 500 are within w12% of the
predictions of rubber elasticity. The stress values after the peak
stress at lfrac z 18 correspond to the additional fracture resistance
provided by highly entangled solvent chains and dangling ends.
This stress resistance is remarkably manifested as a distinct
shoulder at lz24 at the stressestrain curve of the most entangled
gel with NA ¼ 500 and NB ¼ 1000. All simulated networks and gels
(NA s 0) exhibit a crossover from Gaussian to Langevin (supra-
linear) strain hardening around g(l) ¼ 45�50, which is compatible
with the idea that the latter begins when chain segments between
trapped entanglements are stretched to an end-to-end distance
about 1/3 of their contour length [43]. The pure-melt systems with
NB ¼ 1000 (NA ¼ 0) show a crossover to Langevin strain hardening
at a rather larger strain (g(l) ¼ 150 or l ¼ 12.3), consistent with
significant large-scale relaxation of chains during the course of the
deformation, while those with NB ¼ 1000 actually show behavior
that is sublinear in g(l) and reminiscent of transient rubber elas-
ticity (or, more pertinently, of viscous flow) [47] .
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3.3. Number of broken bonds and toughness

We now move on to a discussion of the micromechanisms of
fracture, focusing on bond scission. First we will discuss fracture of
two polymer networks (NA¼ 250,NB¼ 0 andNA¼ 500,NB¼ 0). Our
results show that the mechanical responses of these networks are
similar (see Fig. 2). Note that the stress tail (l> lfrac) is larger for the
more entangled networkwithNA¼ 500 and is a result of high strain
rate; at lower strain rates wewould obtain sharper fracture for both
networks.

For ideal tetra-functional networks with M network chains of N
monomers, the total number of bonds is Nb ¼ (Nþ1)M; values of Nb
are approximately equal in all our systems (Nb z 250,000). To
examine the mechanisms of network fracture, we computed the
numbers of broken chains and bonds, as well as how many seg-
ments an individual chain breaks into, during the deformation
(Figs. 3 and 4). For our chosen covalent bond strength, the onset of
bond scission corresponds roughly to the onset of Langevin hard-
ening. Bond scission accelerates rapidly as network integrity pro-
gressively breaks down, and reaches a plateau after fracture. We
find that the total number of broken bonds during the deformation,
Nf
b, is almost equal for both networks, suggesting that both net-

works have a similar toughness (Fig. 3a). Although the fracture
energy depends on the stress associated with bond-breaking, the
number of broken bonds is rather small (Fig. 3 (a)), so there are
many other important contributors to the stress such as rubber-
Fig. 4. Number of broken network strands, Mf
A as a function of the stretch ratio l, for

the pure networks (NB ¼ 0) for (a) NA ¼ 250 and (b) NB ¼ 500 at the true strain rate
_e ¼ 10�5s�1

LJ .
elastic and viscoelastic effects that could dominate; these will be
examined in further detail below.

The number of broken chains, Mf
A is larger for the network with

the shorter strands than for the network with the longer strands
(Fig. 3b). Values of Mf

A=M
0
A are approximately 0.25 and 0.45 for

NA ¼ 250 and NA ¼ 500, respectively, where M0
A is the initial

number of chains. Thereforew25% and 45% of all chains are broken
during the deformation for the networks with NA ¼ 250 and
NA ¼ 500, respectively (Fig. 3c). One potential explanation for this
somewhat counterintuitive result is that the shorter network
chains are weakly entangled and can relax their configurations on
the timescales of our simulations, However, this seems to contra-
dict the slightly smaller fracture strain shown in Fig. 2. Another
potential explanation involves the number of broken bonds per
chain. The equal number of broken bonds and the unequal number
of broken chains is explained by the fact that an entangled strand
can be broken simultaneously at many places during the tensile
deformation. Weakly entangled network chains with NA ¼ 250
typically break into only two parts, but strongly entangled network
chains with NA ¼ 500 often break into three or four parts, respec-
tively when two and three bonds simultaneously rupture (Fig. 4).
The majority of network chains with NA ¼ 500 rupture into two
pieces, and the resulting dangling chains are most likely longer on
average than the dangling chains of the network with shorter
strands (NA ¼ 250). This leads to a larger stress tail for l > lfrac for
the network with NA ¼ 500 since pull-out of longer entangled
dangling chains requires more work.

Since no chain-scale relaxation can occur for these systems,
before chain rupture and fracture on the molecular level occurs
through bond scission, we assume that the relevant variable con-
trolling fracture energy is the areal density of broken bonds [30].
We will estimate the threshold fracture energy W0 with a simple
analytic prediction that assumes instantaneous fracture and linear-
elastic fracture mechanics. Following Lake and Thomas [48] and
including a contribution of the trapped entanglements [49], W0 is
given by multiplying the energy required to rupture a strand of Nst
monomers, Utot,, by the number of chains crossing a unit area in the
unstrained state, ½rcL, where L2 is the average chain end-to end
distance, L z hR2i1/2. This yields

W0 ¼ 1
2
rc

D
R2

E1=2
Utot; (3)

rc is the strand density. Under the simplifying assumption that in
order to break a bond in a given chain it is necessary to subject all
bonds in that same chain to the breaking force [48], Utot ¼ NstU0,
where U0 is the energy required to rupture a monomer unit; for the
present model, U0z 45u0. Assuming that contributions of chemical
junctions and entanglements to the elastic network structure are
additive, and taking Nst ¼ Neþ1 for the entangled polymer, the
fracture energy is given by

W0 ¼ 0:61C1=2
N lbrcðNe þ 1Þ1:5U0 (4)

The numerical factor in Equation (4) is taken from Ref. [48]. Here
we have neglected network defects since our cure ratio is larger
than 90%. Since rc ¼ r(1/Neþ1/Nc) and Nc >> Ne, where Nc is the
number of monomers between the cross-links for the well-
entangled networks, W0 does not depend strongly on Nc. Thus
the molecular-scale fracture energy does not strongly depend on
the molecular weight of the network strands. Similar results have
been observed in experiments, showing that fracture energy ap-
proaches a constant value for networks with strand molecular
weight larger than Ne [49]. Note, that Lake and Thomas approach is
true only for the “sharp” fracture occurring at the low strain rates



Fig. 5. (a) Total normalized number of broken bonds, Ntot
b =V . (b) Normalized number

of broken bonds, computed separately for a network and solvent Nnet
b =V and Nsol

b =V
shown in connected and unconnected symbols, and symbols, respectively. The strain
rate was _e ¼ 10�5s�1

LJ . The uncross-linked polymer melt (NA ¼ 0 and NB ¼ 500) does
not undergo bond rupture (results are not shown).
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when stress rapidly drops off at lfrac, so the impact of the dangling
structures on stress is insignificant. We report values for W0 in
Table 4 and discuss impact of dangling structures on the network
toughness in the following section.

Earlier we noted (Fig. 2) that more-entangled systems exhibit
larger fracture stresses and smaller fracture strains, and surmised
that this arises from the fact that when solvent chains are longer,
more chains must be broken as the crack propagates. To confirm
this, we examine bond scission in more detail. Fig. 5(a) and (b)
show the density of broken backbone bonds Ntot

b =V as well as the
density of network and solvent broken bonds Nnet

b =V and Nsol
b =V ,

respectively. For gels, our results show that Ntot
b =V increases

monotonically with increasing solvent chain length and nearly
plateaus forNB> 500. Although Nnet

b =V of gels of NA¼ 250NB¼ 500
and NA ¼ 250 NB ¼ 1000 are approximately equal (Fig. 5b), the total
number of broken bonds, Ntot

b =V is larger for the gel dissolved in the
longer solvent with NB¼ 1000 (Figs. 5a and 2). Further, all gels have
Ntot
b =V lower than values exhibited by pure networks, and Ntot

b =V of
pure melts is substantially lower than Ntot

b =V of the gels. These
observations suggest that the trapped entanglements and cross-
links dominate the stress associated with bond-breaking. Note that
it is reasonable to assume [50] that in all systems except the pure
un-crosslinked melts, the number of entanglements before the
onset of bond scission is approximately constant during our high
strain rate deformation.

Fig. 5 also illustrates an interesting two-step gel fracture
mechanism. Network chains undergo scission first, well before
fracture. This is followed by scission of solvent chains if they are
sufficiently long (Fig. 5b). This implies that after the network chains
break, long entangled solvent chains provide additional fracture
resistance, thereby effectively increasing the number of chains that
must be broken before a crack can propagate. The fact that network
strands break first indicates that trapped (networkenetwork) en-
tanglements dominate the initial step of a multistep fracture
mechanism of the polymer gels. This phenomenon increases the
load borne by the remaining strands, and network-solvent physical
crosslinks or entanglements break second. The final entanglements
to break are solventesolvent; this is consistent with the intuitive
explanation that solvent chains can relax during deformation, and
increasingly so once the first two steps decrease the degree of
entanglement trapping. Since the longest considered network
strand is NA ¼ 500, the dangling chains, which are produced in the
progression of chain rupture, always have length less than 500, and
consequently these dangling ends do not rupture during the tensile
deformation.

Values of hZBi taken from Table 3 for the gels of NA ¼ 250
NB ¼ 1000 and NA ¼ 500 NB ¼ 1000 are very close (27.38 and 27.91,
respectively).Ntot

b =V and the stress responses of these gels are also
similar (Figs. 2 and 5a). Fig. 5b shows that solvent and non-
crosslinked polymers of 1000 beads undergo chain rupture under
deformation. Shorter solvent and non-crosslinked polymers of 500
beads do not rupture (not shown). Our findings are consistent with
Table 4
Threshold fracture energy of the polymer networks and gels; theoretical estimates
W0, u0/a3 are given by Equation (4) and values W1 and W2, u0/a3 measured from
simulations are given by Equation (6).

NA NB W0 W1 W2 Wb

250 0 608 570 1470 5.2
250 4 202 359 897 8.9
250 500 597 754 1673 11.1
250 1000 583 880 1707 9.5
500 0 581 687 1963 6.4
500 1000 551 874 1962 10.3
experiments that have demonstrated fracture-like behavior inwell-
entangled polymer melts of poly(styrene-butadiene) [51] or
poly(ethylene oxide) [52] under very rapid step strains; entangled
polymeric liquids become solidlike (i.e. behave as nearly elastic
rubbers) at such high strain rates.

To illustrate the importance of entanglements to the mechanical
properties of the gels, we also evaluated to how many parts an
individual network or solvent chain breaks in the tensile defor-
mation for gels. Longer network strands of NA ¼ 500 can break into
3 and 4 pieces even when diluted in solvent, but shorter chains of
NA ¼ 250 mostly split into two parts. The polymer solvent of
NB ¼ 1000 also splits into two parts, and as mentioned earlier, the
polymer solvent of NB ¼ 500 does not rupture at all.
3.4. Relaxation timescale and fracture

Next we relate the results reported above to the underlying
relaxation timescales of the systems. The time of simulations from
zero to maximum strain is tb ¼ logðlbÞ= _e at constant true strain
rate _e ¼ 10�5s�1

LJ . For an elongation-to-break lb z 15, the tb is
approximately equal to 3.105sLJ. The values of longest viscoelastic
relaxation time of the polymeric solvent, i.e. the reptation time td,
are 7,105sLJ and 5,106sLJ for NB ¼ 500 and 1000, respectively. We
estimated td from Ref. [53] as
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td ¼ 0:39N2ð1þ N=NeÞ; sLJ; (5)
Fig. 6. (a) Total number of broken bonds computed separately for a network and
solvent: Nnet

b and Nsol
b for polymer gel with NA ¼ 250 and NB ¼ 1000 for strain rates

_e ¼ 10�4s�1
LJ and 10�5s�1

LJ . (b) True stress s vs. extension l.
where the “rheological” entanglement length Ne ¼ 86 [40]. Alter-
natively, td could be estimated from eq. (5) by substituting the 0.39
prefactor in eq. (5) with 1.47 as proposed in Refs. [54], yielding
values would of 2.5,106sLJ and 1.8,107sLJ for NB ¼ 500 and 1000,
respectively. These values are for quiescent systems and are of
course shortened in our highly deformed systems via forced
reptation, i.e. “chain retraction” [50,55]. Thus tb is of order the
putative reptation time for the shorter (NB ¼ 500) solvent, and
nonnegligible compared to it for the longer (NB ¼ 1000) solvent.
Further, tb is larger than the Rouse time, tR of the shorter solvent
and comparable to the Rouse time of the longer solvent, where the
tR are respectively 1.85,105sLJ and 7.4,105sLJ for NB ¼ 500 and 1000.
We have estimated tR from tR ¼ N2/3p2wsLJ, where
w ¼ kBT=zC

1=2
N lb ¼ 0:025sLJa�2 and z is the onomer friction coef-

ficient [54]. Thus it is possible for fracture to proceed via chain pull-
out for our systems. The dangling ends created during chain
rupture could also enhance chain pull-out. Note that the relaxation
times of these structures are longer than ones of linear uncon-
strained polymer chains of the same length.

To check whether this occurs, we performed additional simu-
lations for the NA ¼ 250, NB ¼ 1000 polymer gel at a higher strain
rate of _e ¼ 10�4s�1

LJ . At this strain rate, tb is approximately equal to
tb z 3 104sLJ and tb < tR. Our results indicate that at _e ¼ 10�4s�1

LJ ,
solvent-network entanglements behave similarly to the networke
network entanglements; “sliding” of solvent chains is suppressed
at this higher strain rate. Consequently, solvent and network chains
rupture at the same elongation (Fig. 6). Similar results were
observed by Sides et al. [30] in simulations that also had tb < tR;
they did not observe any substantial difference in the chain pullout
vs. chain scission competition between pure melts and cross-linked
networks.

Thus, our findings suggest that for the chain lengths employed
here, at _e ¼ 10�5s�1

LJ , fracture of polymer gels proceeds via both
chain pull-out and chain scission. For the higher strain rate,
_e ¼ 10�4s�1

LJ , fracture proceeds almost exclusively through chain
scission.

Comparing our results at the two strain rates, we can see that the
maximum at the stressestrain curves corresponds to the onset of
bond scission for pure networks (Figs. 2 and 5); stressestrain curves
have rather narrow peaks. In contrast, the stressestrain curves of the
gels withNB> 4 show some roughness that corresponds to the onset
of bond scission, but the stress continues to rise, showing that
entangled long solvent chains add fracture resistance.

We estimate the fracture energy on molecular level (fracture
toughness) W of the polymer networks and gels from the tensile
deformation simulations by numerical integration of the stresse
elongation curves:

W ¼
Zl
1

sdlhðlÞ; (6)

where h(l) is the sample length along the deformation direction.
We calculated the local fracture energy by integrating the entire
curve, defined as W2, as well as integrating up to the peak stress
occurring at l ¼ lfrac, defined as W1. The value of W2 could be used
to estimate the local fracture toughness for the viscous flow at
l > lfrac. Results for the molecular-scale fracture toughnesses W1
and W2 and the full fracture toughness normalized by the number
of broken bonds, Wb ¼ W2/Nb, are shown in Table 4.

These show the same trends that we observed for the stress
associated with bond-breaking; for example, the toughness
increases only slowly with the melt strand length for the well-
entangled polymer networks. We found that the gels of NA ¼ 250
NB ¼ 1000 and NA ¼ 500 NB ¼ 1000 have very close values of W1
that correspond to the same number of broken bonds (Fig. 5a).
However, the gel with longer network strands (NA ¼ 500
NB ¼ 1000) has markedly higher value of W2, as can be seen from
the noticeable tail of the stressestrain curve.

This can be explained by stress contribution of the longer
entangled dangling strands formed by rupture of NA ¼ 500 systems
in comparison to those formed by NA ¼ 250 systems. Remarkably,
we found that values of W1 of polymer gels with NA ¼ 250 and
NB ¼ 500 and 1000 are respectively w1.58 and 1.75 times greater
than values of W1 of the pure network with NA ¼ 250, while W1 of
the polymer gel with NA ¼ 500 and NB ¼ 1000 is w1.40 times
greater than the value of W1 of the corresponding pure network.
The total number of broken bonds, Ntot

b , is smaller for these gels in
comparison to the corresponding pure networks (Fig. 5a). This
observation yet again implies that solvent-network entanglements
enhance the fracture toughness of gels dissolved in high molecular
weight polymers. However, if dangling ends are taken into
consideration, the local fracture toughness differs only slightly
between entangled polymer gel and entangled networks. W2 of
polymer gels with NA ¼ 250 and NB ¼ 500 and 1000 is w1.1 times
greater than values ofW2 of the pure network with NA ¼ 250, while
W2 of the polymer gel with NA ¼ 500 and NB ¼ 1000 is equal to W2
of the corresponding pure network. Since the total entangled
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densities of the considered entangled polymer gels and networks
with exception of gel with NA ¼ 250 NB ¼ 4 are nearly equal, we
conclude that the stress at l > lfrac is mostly dominated by the
entanglement contribution.

Also, we observed that both values ofW1 andW2 of polymer gels
with NA ¼ 250 dissolved in high molecular weight solvent
(NB¼ 500 and 1000) are greater than local fracture toughness of the
polymer gel with NB ¼ 4, and W increases with increase of NB.
Analogous results have been observed in experiments by Mrozek
et al. [7]; they found that the toughness of PDMS gels diluted in 50%
of high-molecular-weight solvent is about 50% higher than, and the
toughness of PDMS gels in 50% small-molecule solvents is signifi-
cantly lower than, the toughness of pure PDMS networks pos-
sessing the same network strand length.

The influence of the solvent on the fracture of polymer gels is
evenmore pronounced for the tear energy per broken bond,Wb.Wb
increases by w2.00 times for the entangled polymer solvent
NB ¼ 500 and 1000 for the gel with NA ¼ 250 compared to the
corresponding pure network. Similarly, Wb of polymer gel with
NA ¼ 500 and NB ¼ 1000 is w1.6 times greater than values of Wb of
the corresponding pure network. Table 4 shows that the estimate of
the threshold fracture energy obtained from Eq. (4), W0, is a
reasonable estimation for the measured value W1 for entangled
cross-link polymers without solvent. This finding has been
confirmed by recent experimental results [56] showing good
agreement with the LakeeThomas model for unentangled gels.
However, the LakeeThomas model cannot make predictions for
uncrosslinked systems since it does not include the influence of
finite strain rate and non-trapped entanglements. Future molecular
dynamics simulations and experiments are necessary to elucidate
the molecular pictures behind the macroscopic observations of
nonlinear responses of realistic entangled polymers at large fast
deformation [57].

4. Conclusion

We performed coarse-grained molecular dynamics simulation
showing that the molecular-scale fracture toughness of polymer
gels well above their glass transition temperatures strongly de-
pends on chain entanglement in the ballistic regime. Although our
results indicate that the trapped entanglements dominate the
fracture energy of polymer gels, the solvent-network entangle-
ments play an important role in increasing of the gel toughness by
effectively increasing the number of chains that must be broken as
the crack propagates. We have shown that polymer gels containing
high molecular weight solvents exhibit higher fracture toughness
relative to the pure polymer network. This is in dramatic contrast to
polymer gels containing low molecular weight solvent that will
produce lower fracture toughness relative to the pure polymer
network. Our results are in qualitative agreement with experi-
mental observations [7] that entangled solvent substantially in-
creases gel toughness, thereby playing a critical role in controlling
the mechanical response of polymer gels. However, they provide a
novel insight by relating the stress response of entangled gels to
bond scission. We argue that this result is fairly universal since it
depends quantitatively but not qualitatively on the activation en-
ergy for backbone bond scission. Most importantly, we found a
two-step gel fracturemechanism responsible for fracture resistance
of the entangled gels at the moderate strain rates: network chains
undergo scission first, followed by scission of solvent chains. At
higher strain rates, solvent and network chains rupture at the same
elongation, leading to single-step gel fracture. In addition, our re-
sults suggest that the dangling ends produced in the progression of
network chain rupture improve molecular-scale fracture toughness
of polymer gels and networks by enhancing chain pull-out.
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