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Semiflexible polymer glasses (SPGs), including those formed by the recently synthesized semiflexible
conjugated polymers, are expected to be brittle because classical formulas for their craze extension ratio
λcraze and fracture stretch λfrac predict that systems with Ne ¼ C∞ have λcraze ¼ λfrac ¼ 1 and hence cannot
be deformed to large strains. Using molecular dynamics simulations, we show that in fact such glasses

can form stable crazes with λcraze ≃ N1=4
e ≃ C1=4

∞ , and that they fracture at λfrac ¼ ð3N1=2
e − 2Þ1=2≃

ð3C1=2
∞ − 2Þ1=2. We argue that the classical formulas for λcraze and λfrac fail to describe SPGs’ mechanical

response because they do not account for Kuhn segments’ ability to stretch during deformation.

DOI: 10.1103/PhysRevLett.129.127801

One of the most remarkable features of polymer glasses
is their ability to form mechanically stable crazes, fibrillar
load-bearing structures that form ahead of cracks. Polymer
is drawn into a stable craze at a constant stress. Crazes
formed in this way can extend for microns along the
direction perpendicular to the crack [1,2]. This allows
ductile polymer glasses’ fracture energyGc to be 103 − 104

times larger than their interfacial free energy Geq [3],
in contrast to brittle crystalline materials which have
Gc ≃Geq. Their large Gc enables ductile polymer glasses’
use in a wide variety of load-bearing applications despite
their low elastic moduli compared to metals and other
structural materials.
Semiflexible conjugated polymers (SCPs) are attracting

great interest owing to their potentially unique combination
of electronic and mechanical properties [4,5]. Many such
polymers are semicrystalline and brittle in their solid form,
limiting their utility in situations where mechanical ducti-
lity and toughness are required [6,7]. Other SCPs are better
glass formers [7,8], but since many of these have only
recently been synthesized (and only in small quantities),
their melt rheology is only beginning to be studied [9], and
their glassy-state mechanical properties remain largely
unknown. Fortunately, coarse-grained computer simula-
tions can offer key insights into these polymers’ potential
for load-bearing applications such as wearable and bio-
implantable electronic devices [4–6].
Key among the questions to be answered is whether

these polymers are capable of stable craze drawing. The
standard model of craze formation, developed by Kramer
et al. [1,10,11], suggests that they are not. Kramer’s
argument proceeds as follows: the density ratio of unde-
formed glass and fully developed crazes (i.e., crazes away
from the interfacial region) is λcraze ¼ ρu=ρfd. In the
undeformed glass, the mean-squared end-end distance of

a typical entangled chain segment is hR2iu ¼ l0lKNe ¼
l2
0C∞Ne, where l0 is the polymer’s backbone bond length,

lK is its Kuhn length, C∞ ≡ lK=l0 is its characteristic
ratio, and Ne is its entanglement length. In a fully deve-
loped craze, the segment has pulled taut and its mean-
squared end-end distance is hR2ifd ¼ l2

0N
2
e. Assuming the

segment stretches by a factor λcraze as it is drawn into the
craze gives hR2ifd ¼ λ2crazehR2iu.
Combining these expressions for hR2ifd yields the

equation l2
0N

2
e ¼ λ2crazel2

0C∞Ne, which in turn gives the
well-known prediction

λcraze ¼
ffiffiffiffiffiffiffi
Ne

C∞

s
; ð1Þ

which correctly describes the experimental trends for
ductile commodity polymers [1,2]. Remarkably, the Ne
that successfully predict λcraze are the same as those
obtained from measurements of the plateau modulus
(G0

N ¼ 4ρkBT=5Ne), indicating that entanglements in
polymer glasses are inherited from their parent melts [1].
An analogous argument can be used to predict the local

uniaxial stretch λfrac at which the craze must fail via chain
scission [1], leading to brittle fracture of the entire sample.
In the undeformed glass, the mean-squared projections
of entangled-segment dimensions along the x, y, and
z axes are

hR2ix;u ¼ hR2iy;u ¼ hR2iz;u ¼
l2
0C∞Ne

3
: ð2Þ

Just before the craze fails, assuming that the sample is
uniaxially stretched along the z axis and that entangled
segments deform affinely, hR2ix and hR2iy remain the
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same, while hR2iz has increased by a factor of λ2frac. Setting
hR2ifd ¼ ð2þ λ2fracÞl2

0C∞Ne=3 ¼ l2
0N

2
e yields

λfrac ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Ne

C∞
− 2

s
: ð3Þ

Equation (3) accurately predicts λfrac in simulations of
bead-spring polymer glasses as long as Ne ≫ C∞ [12,13].
Equations (1) and (3) predict λcraze ¼ λfrac ¼ 1 when

Ne ¼ C∞, implying that semiflexible polymer glasses
(SPGs), which by definition have Ne ≃ C∞ [9], cannot
form stable crazes. Analogous arguments for the natural
draw ratio λNDR predict λ2NDR þ 2=λNDR ¼ 3Ne=C∞ and
hence λNDR ¼ 1, implying that they cannot form stable
shear bands either. If SPGs cannot yield via either crazing
or localized shear banding, they are very likely to be brittle,
severely limiting their utility for load-bearing applications.
In this Letter, using molecular dynamics simulations of a

bead-spring model which has been shown to capture many
features of glassy-polymeric mechanical response [14,15],
we show that in fact SPGs with Ne ≃ C∞ can form stable
crazes, with λcraze ≃ N1=4

e ≃ C1=4
∞ , and that they fracture at

λfrac ≃ ð3N1=2
e − 2Þ1=2 ≃ ð3C1=2

∞ − 2Þ1=2, over a wide range
of temperatures. For low T, the microstructure of these
crazes is quantitatively but not qualitatively different from
those formed in flexible polymer glasses (FPGs). For
higher T, cavitation is more localized—voids grow in a
non-system-spanning fashion—but the coexistence of
unyielded and cavitated regions at equal stress stabilizes
systems against fracture in a manner similar to that recently
observed in experiments on very-ductile, densely entangled
FPGs [16,17]. We explain these results by (i) recognizing
that Kuhn segments in undeformed glasses are not straight,
but in fact consist of

ffiffiffiffiffiffiffi
C∞

p
statistical segments and hence

can pull taut during craze extension, and (ii) arguing that
SPGs can be mechanically stabilized by the combination of
a high rate of void nucleation (cavitation) combined with a
relatively low rate of void growth.
We study crazing in model SPGs using molecular

dynamics (MD) simulations of the semiflexible, break-
able-bond variant of the Kremer-Grest model [18–20]. All
MD simulations are performed using LAMMPS [21].
Monomers have mass m and interact via the truncated
and shifted Lennard-Jones potential ULJðrÞ ¼ 4ε½ða=rÞ12−
ða=rÞ6 − ða=rcÞ12 þ ða=rcÞ6�, where ε is the intermonomer
binding energy, a is the monomer diameter, and rc ¼ 27=6a
is the cutoff radius. The Lennard-Jones time unit is
τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ma2=ε

p
, and the MD time step employed in this

study is δt ¼ τ=200. Covalent bonds are modeled using a
quartic potential commonly employed in studies of glassy-
polymeric fracture [13,14,20,22]:

UbondðlÞ ¼ kqðl − RbÞ3ðl − Rb − B2Þ: ð4Þ

Bonds break when their length (l) exceeds Rb ¼ 1.3a. The
ratio of the forces at which covalent and van der Waals
bonds break is set to 50 by setting kq ¼ 4431ε=a4; this
choice makes bond scission slightly easier than in many
previous studies [12,13]. Angular interactions between
three consecutive beads along chain backbones are mode-
led using the standard potential UangðθÞ ¼ κ½1 − cosðθÞ�
[19], where θ is the angle between consecutive bond
vectors. Here we primarily employ well-entangled
κ ¼ 5.5ε chains, which (at temperature T ¼ ε=kB) have
C∞ ≃ 10.3 and Ne ≃ 10.3 [23]. This value of κ=kBT places
systems just below the onset of midrange nematic order,
where chains are maximally entangled [19,24,25]. The
same stiffness regime is occupied by some of the SCP melts
studied in Refs. [7–9,26].
Polymer melts composed of Nch ¼ 1000 linear chains of

N ¼ 400 monomers were thoroughly equilibrated at
T ¼ ε=kB as described in Ref. [23], and then slowly cooled
at zero pressure as described in Ref. [13]. After cooling, we
uniaxially extended systems along their z axes at a constant
true strain rate _ϵ≡ _ϵzz ¼ 10−5=τ that is small enough to be
near the quasistatic limit [27]. We deformed systems at this
rate until they had extended well beyond fracture, as
identified by the postyield maximum in the axial stress
σzz. Postyield cavitation and void growth during these runs
were characterized using a refined version [28] of the
method described in Ref. [29].
First we discuss the basic features of this model SPG’s

mechanical and structural responses to deformation at two

temperatures [T ¼ 0 and T ¼ 0.44ε=kB ≃ 3Tg=4] that

(a)

(b)

FIG. 1. Stress-strain curves for our model SPG at T ¼ 0 [panel
(a)] and T ≃ 3Tg=4 [panel (b)]. Vertical dashed lines from left to
right respectively correspond to λ ¼ λyield, λ ¼ λcraze, and
λ ¼ λfrac, and the horizontal dashed lines illustrate the coexistence
of unyielded and crazed regions at equal σzz.
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should respectively favor brittle and ductile deformation
[15,30]; the latter corresponds to T above Troom for many
SCPs [7–9]. We also performed deformation simulations at
other 0 < T < 3Tg=4, and found that all results were
intermediate between those discussed below. Figure 1
shows that the axial stress σzzðλÞ, transverse stress
σtransðλÞ ¼ ½σxxðλÞ þ σyyðλÞ�=2, and pressure P ¼ ½σxxðλÞþ
σyyðλÞ þ σzzðλÞ�=3, where λ≡ Lz=L0

z ≡ lnðϵzzÞ is the uni-
axial stretch, are all qualitatively identical to those exhib-
ited by flexible polymer glasses undergoing stable crazing
in both experiments and simulations [1,2,12,14], for both
T. Specifically, σzz exhibits an elastic regime, followed by
very sharp cavitation-induced yielding and massive strain
softening at λ ¼ λyield, followed by stable craze drawing at
nearly constant stress, followed by strain hardening that is
roughly linear in λ, and finally by fracture at λ ¼ λfrac, with
λfrac ¼ 2.57 for T ¼ 0 and 2.53 for T ¼ 3Tg=4. For
mechanically stable crazes, one expects λcraze to satisfy
σzzðλyieldÞ ¼ σzzðλcrazeÞ; the horizontal dash-dotted lines
suggest λcraze ≃ 1.71 for T ¼ 0 and 1.76 for T ¼ 3Tg=4.
Next, we show explicitly that this model SPG can form

stable crazes, as indicated by the presence of coexisting
high- and low-density regions with density ratio ∼λcraze.
Figure 2 shows how the monomer-number-density profiles
ρðz=LzÞ evolve with increasing strain. In the undeformed
glass, ρ ¼ ρu is z-independent. At λ ¼ λyield ≃ 1.09, as
yielding occurs via cavitation and craze nucleation [12],
one or more lower-density regions form. For the T ¼ 0

glass [panel (a)], a single low-density region forms,
centered at z ≃ 0.8Lz. The density of this region continues
to decrease as more material is drawn into the craze, until it
plateaus at ρ ¼ ρfd ≃ 0.60a−3. Then it remains nearly
constant as the rest of the polymer is progressively drawn
into the craze. Thus, this glass has λcraze ≃ 1.03=0.6 ≃ 1.72.
For the T ¼ 3Tg=4 glass [panel (b)], the above picture is
obscured because cavitation and void growth is less
localized along the axial direction. However, the similarity
of the stress-strain curves shown in Fig. 1 suggests that
essentially the same physics is controlling both systems. In
particular, they suggest that upon yielding via cavitation,
localized regions within samples stretch by a factor
∼λcraze=λyield before being stabilized by these systems’
strong strain hardening.
Crazes in flexible-polymer glasses (FPGs), all of which

have Ne ≳ 4C∞ [1,31], have a universal microstructure.
Their primary fibrils, which are highly oriented along the
direction of extension, have a typical diameter D and are
separated by a typical distance D0. These fibrils are held
together by entanglements, and are further stabilized by
smaller cross-tie fibrils [1,2]. Figure 3 shows that for low T,
the tighter entanglement constraints present in SPGs
modify this structure quantitatively but not qualitatively.
Compared to FPG crazes [12,14,32], SPG crazes have a
larger D=D0, fibrils that are less oriented along the
z direction, and less-clear distinctions between primary
and cross-tie fibrils. For higher T, the dilatation inherent to
the uniaxial extension employed in this study occurs
through nucleation and growth of intermediate-sized voids
that do not span the xy plane, rather than through drawing
of a single craze. Such voids are consistent with a
combination of cavitation and shear yielding, i.e., with
the strain localization mechanism expected for a densely
entangled ductile FPG [1,2].

(a)

(b)

FIG. 2. Density profiles vs. strain for our model SPG at T ¼ 0
[panel (a)] and T ≃ 3Tg=4 [panel (b)]. The dashed black line in
panel (a) indicates ρfd. Here, the Lz ¼ λL0

z are the lengths of the
periodic simulation cells along their z axes.

(a) (b)

FIG. 3. Cross sections of thickness 5σ illustrate the structure
of our SPG at λ ¼ λcraze, for T ¼ 0 [panel (a)] and T ¼ 3Tg=4
[panel (b)].
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Recent experiments on extremely ductile polymer
glasses like polyphthalamide (PPA) [16,17] have shown
that formation of voids ahead of craze fronts effectively
dissipates energy and promotes ductility. The same experi-
ments have shown that void growth that is linear or
sublinear in λ indicates mechanical stabilization by strain
hardening (which has long been known to promote ductility
[1,2]), in contrast with unstable supralinear void growth
that leads to fracture. Figure 4 shows that both these trends
are displayed by our model SPGs. After cavitation occurs at
λ ≃ λyield, systems’ effective void volume fractions fv ∼
ðλ − 1Þ=λ do not depend strongly on chain stiffness, but
SPGs form far more (and hence far smaller) voids than
FPGs for both T. Many of these voids nucleate ahead of the
craze front or larger non-system-spanning voids, and
remain very small. Growth of the largest voids appears
to be linear in λ for λyield < λ≲ λfrac − 0.2. Fewer (and
larger) voids form for T ¼ 3Tg=4 than for T ¼ 0, consis-
tent with the contrast illustrated in Fig. 3. Overall, these
results suggest that the same micromechanisms that stabi-
lize PPA [16,17] can also stabilize suitably designed SPGs.
The surprising ability of our SPGs to stably craze draw

can be explained by recognizing that, contrary to the
assumptions underlying Eqs. (1) and (3), Ne ≃ C∞ does
not imply that entangled strands cannot substantially
stretch during sample deformation. A typical Kuhn seg-
ment contains

ffiffiffiffiffiffiffi
C∞

p
statistical segments of length b ¼ffiffiffiffiffiffiffiffiffiffiffi

l0lK
p ¼ ffiffiffiffiffiffiffi

C∞
p

l0 [33]. In the undeformed glass, its mean-
squared end-end distance is hR2iu ¼ b2

ffiffiffiffiffiffiffi
C∞

p ¼ l2
0C

3=2
∞ .

Pulling this segment taut increases its mean-squared
end-end distance to l2

0C
2
∞. Assuming that this taut state

corresponds to fully developed crazing gives us

hR2ifd ¼ λ2crazehR2iu, which yields λcraze ¼ C1=4
∞ . For

SPGs with Ne ¼ C∞, this expression becomes [34]

λcraze ¼ N1=4
e ≡

�
Neffiffiffiffiffiffiffi
C∞

p
�

1=2
: ð5Þ

Following the same arguments that were used to obtain
Eq. (3) yields an analogous formula for λfrac:

λfrac ¼
�
3

Neffiffiffiffiffiffiffi
C∞

p − 2

�
1=2 ≡ ð3C1=2

∞ − 2Þ1=2: ð6Þ

For the κ ¼ 5.5ϵ, Ne ¼ C∞ ¼ 10.3 chains considered here,
Eqs. (5) and (6) predict λcraze ¼ 1.79 and λfrac ¼ 2.75. The
former prediction is quantitatively consistent with our
measured λcraze ≃ 1.7 − 1.8. While the latter is slightly
above our measured λfrac ¼ 2.5 − 2.6, a difference of this
magnitude is expected because chains break (via scission)
before their Kuhn segments pull completely taut.
Strictly speaking, Eqs. (5) and (6) should accurately

predict λcraze and λfrac only when Ne ¼ C∞. One expects a
gradual crossover to validity of the Kramer formulas with
increasing Ne=C∞, satisfying [35]

ffiffiffiffiffiffiffi
Ne

C∞

s
≲ λcraze ≲

�
Neffiffiffiffiffiffiffi
C∞

p
�

1=2
: ð7Þ

Future work will aim to identify both a universal expression
for λcraze and the micromechanisms underlying its func-
tional form. One potential explanation for the crossover
proceeds as follows: the total number of energetically
costly dihedral rearrangements required to affinely stretch
all the chain segments (of chemical length n) in a polymer
glass by a factor Λ scales roughly as Λn−1=2. Thus, the
work required to stretch a macroscopic sample by a factor λ
is minimized when chain stretching is very subaffine (i.e.,
has Λ ≪ λ) at small n and affine (i.e., has Λ ¼ λ) only for
n≳ Ne. This implies that Kuhn segments in a fully
developed craze should be very weakly (strongly) stretched
in systems with Ne ≫ C∞ (Ne ≃ C∞), and could explain
why Eqs. (1) and (3) [Eqs. (5) and (6)] accurately predict
FPGs’ (SPGs’) λcraze and λfrac.
Designing highly ductile SCPs that are well suited for

electronics applications has been challenging because high
conductivity (high ductility) usually requires a high (low)
degree of crystallinity [6,7]. Factors such as the prevalence
of intermolecular π-π stacking, the degree of regioregu-
larity, and side chain architecture also play important roles.
For these reasons, much recent work has focused on
designing polymers that include the structural features
promoting high conductivity, yet are primarily amorphous
[6,7,36]. The bead-spring model employed in this study
does not crystallize, and does not account for the factors
that control conductivity. Nonetheless, we claim that the

(a)

(b)

FIG. 4. Number of topologically distinct voids Ndv [panel (a)]
and average void volumes hVvi [panel (b)] in model SPGs and in
model FPGs with κ ¼ 0 and κ ¼ 2ε [29]. Solid and dotted curves,
respectively, show results for T ¼ 0 and T ¼ 3Tg=4.
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above results provide useful guidance for SCP-SPG design,
as follows:
Increasing SCPs’ C∞ tends to improve their conductivity

[7]. Decreasing FPGs’ Ne leads to larger strain hardening
moduli GR, which stabilize systems against brittle fracture
[1,2]. This combination of factors suggests maximizing C∞
while minimizing Ne, but increasing C∞ too much leads to
nematic ordering that increases Ne [9,26]. Since the highest
G0

N are achieved in SCPs withNe ≲ 2C∞ [9], andGR ∝ G0
N

[37,38], it seems reasonable to suggest that SPGs with
Ne ≃ C∞, formed, for example, by SCPs that are more
densely entangled than the widely employed P3HT [6–9],
should have optimal mechanical performance. On the other
hand, Kramer’s classic picture [1], which is widely
accepted as correct for FPGs [2,15], predicts that such
systems will be brittle because they have λcraze ¼ λfrac ¼ 1.
Here, we have shown that this need not be the case.

Model SPGs with Ne ¼ C∞ can stably craze-draw, and
exhibit a mechanical response that is qualitatively the same
as that of their flexible counterparts. They appear to be
stabilized against fracture by their strong strain hardening
and by void-formation mechanisms similar to those
observed in very-ductile FPGs [16,17]. We have explained
this result in terms of the Kramer theory’s failure to account
for chain stretching at the Kuhn-segment scale, and
developed alternative theoretical expressions for λcraze
and λfrac [Eqs. (5) and (6)] that quantitatively match our
simulation results. The extensive track record of bead-
spring models in successfully explaining previously poorly
understood aspects of glassy polymer mechanics [14,15]
suggests that these expressions should predict the response
of the amorphous regions within solid SCPs.
We emphasize, however, that brittle fracture in MD

simulations of glassy polymer mechanics can be artificially
suppressed by their use of periodic boundary conditions
(and consequent lack of the surface defects at which
fracture of real systems usually initiates [39]) as well as
the small system sizes [40] and fast thermal-quench rates
[41] to which currently available computational power
restricts them. Such effects may make the ductile response
reported above challenging to observe in practice, making it
especially important for experimentalists interested in
developing new ductile SPGs to employ small sample
sizes, rapid thermal quenching to temperatures that are only
slightly below Tg, and sample-preparation techniques that
minimize surface flaws [42].

We thank Ralph H. Colby for helpful discussions. This
material is based upon work supported by the National
Science Foundation under Grant No. DMR-1555242.
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