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By combining molecular dynamics simulations and topological analyses with scaling arguments, we
obtain analytic expressions that quantitatively predict the entanglement length Ne, the plateau modulus G,
and the tube diameter a in melts that span the entire range of chain stiffnesses for which systems remain
isotropic. Our expressions resolve conflicts between previous scaling predictions for the loosely entangled
[Lin-Noolandi, Gl3

K=kBT ∼ ðlK=pÞ3], semiflexible [Edwards–de Gennes: Gl3
K=kBT ∼ ðlK=pÞ2], and

tightly entangled [Morse, Gl3
K=kBT ∼ ðlK=pÞ1þε] regimes, where lK and p are, respectively, the Kuhn

and packing lengths. We also find that maximal entanglement (minimal Ne) coincides with the onset of
local nematic order.
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Individual entanglements in polymer melts and glasses
are rather ethereal, delocalized objects and hence are not
directly experimentally observable. Tube models of poly-
mer dynamics, which treat entanglements at a mean-field
level, have successfully predicted many of their equilibrium
and nonequilibrium properties [1–5]. However, useful as
these models have proven, they can tell us nothing about
the behavior of individual entanglements because they
represent entanglements collectively as a potential (either
harmonic [4,5] or anharmonic [6–8]) confining a chain to
its tube, and hence cannot provide a complete microscopic
description of polymeric liquids.
Simulations employing topological analysis methods

based on Rubinstein and Helfand’s primitive path construct
[9–13] have provided a microscopic foundation for the tube
model. The primitive path is the shortest path a chain fixed
at its ends can contract into without crossing any other
chains [9,10]. The tube diameter a is the characteristic
extent of chains’ transverse fluctuations about their primi-
tive paths during reptation. In a neat polymer melt, the
“topological” constraints limiting these transverse fluctua-
tions are the primitive paths of the other chains [9,10]. The
combination of tube theory and topological analysis has led
to great advances in our understanding of polymer melt
rheology [14,15].
One major remaining gap in this understanding is that

tube-theory-based formulas for the entanglement length
Ne, tube diameter a, and plateau modulus G of flexible,
semiflexible, and stiff polymer melts are incompatible with
each other. Specifically, scaling theories for these systems
assume different mechanisms of entanglement, and hence
predict three different power laws for the dependence of Ne

on chain geometry and concentration [16–21]. Each of
these power laws has been supported by both experiments
[22–25] and simulations [10,13]. However, they are each
supported only within their postulated range of validity, and
quantitatively accurate theories of entanglement for sys-
tems that are intermediate between these regimes have not
yet been developed. In this Letter, we resolve this issue by
presenting analytic expressions for Ne, a, and G that are
compatible with all three power-law-scaling regimes, and
showing that they are consistent with topological analysis
results for polymer melts that range from fully flexible to
nearly stiff.
Two key quantities for characterizing the intrachain and

interchain structure of polymer melts and solutions are the
Kuhn length lK and the packing length p. lK can be
estimated by fitting the chain statistics to the wormlike-
chain model:

hR2ðnÞi
nl0

¼ lK

�
1 −

lK

2nl0

�
1 − exp

�
−
2nl0

lK

���
; ð1Þ

where hR2ðnÞi is the mean-squared distance between
monomers separated by chemical distance n and l0 is
the backbone bond length. p is defined as p ¼ ðρchR2

eeiÞ−1
[22], where ρc is the number density of chains and hR2

eei is
their mean-squared end-end distance. In neat N-mer
melts and solutions with monomer number density ρ and
polymer volume fraction ϕ, each chain occupies a volume
Ω¼Nϕ=ρ¼ϕ=ρc. Writing this volume asΩ¼πðd=2Þ2Nl0

defines an effective chain diameter d. The tube diameter a
is defined to be the end-to-end distance of a Gaussian coil
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of chemical length Ne and effective bond length
b ¼ ffiffiffiffiffiffiffiffiffiffiffi

lKl0

p
. Hence, Ne ¼ ða=bÞ2 is the average number

of bonds in an entangled strand, and the entanglement
length is Le ¼ Nel0.
For these systems, the plateau modulusG is related to Ne

via G=kBT ¼ ρ=Ne ¼ ρe, where ρe ¼ ρ=Ne is the entan-
glement number density [3]. The polymer contour length
density, which was identified by Graessley and Edwards as
another quantity characterizing systems’ degree of entan-
glement [26], is given by λ ¼ ρl0 ¼ ðlKpÞ−1. The number
of Kuhn segments per chain is NK ¼ Nb2=l2

K ¼ N=C∞
(where C∞ ¼ lK=l0 is Flory’s characteristic ratio), and the
number density of Kuhn segments is ρK ¼ ρcNK ¼ λ=lK ,
implying lK=p ¼ ρKl3

K. The average number of entangle-
ment strands per entanglement volume is ρca3ðN=NeÞ ¼
a=p, and the average number of chains inside the
volume spanned by one chain is the “Flory number”
nF ¼ ρchR2

eei3=2 ¼
ffiffiffiffiffiffiffi
NK

p
lK=p. Thus one can write

G
kBT

¼ 1

a2p
¼ lKλ

a2
¼ λ

Le
ð2Þ

and

Le ¼
a2

lK
¼ λkBT

G
ð3Þ

in terms of an unspecified tube diameter a. Note that while
for simplicity we have not included the famous factor of
4=5 (i.e., G ¼ 4ρkBT=5Ne [27]) in Eqs. (2) and (3), it is
trivial to do so.
Using these definitions, Everaers and collaborators have

found that the dimensionless plateau modulus Gl3
K=kBT

scales as ðlK=pÞ3 for loosely entangled flexible-chain
melts with lK≪a, ðlK=pÞ2 for Θ solutions with lK∼a,
and ðlK=pÞ7=5 for tightly entangled solutions of stiff chains
with lK ≫ a [10,13]. These scalings are broadly consistent
with previous theoretical predictions and experimental
results. Fetters found that Gl3

K ∼ ðlK=pÞ3 for a wide range
of synthetic flexible polymers [23,24]; this scaling is
predicted by the Lin-Noolandi conjecture that there are a
fixed number of entangled strands per volume a3 [16,17].
Huang et al. have found that G ∼ ϕ2 and hence Gl3

K ∼
ðlK=pÞ2 in concentrated polystryrene solutions and melts
[28,29]; this scaling is predicted by Edwards’ and de
Gennes’ assumption that an entanglement strand corre-
sponds to a fixed number of binary interchain contacts
[18,19]. For isotropic solutions of stiff chains, Morse used
an effective medium approximation to predict Gl3

K ∼
ðlK=pÞ4=3 and a binary-collision approximation to predict
Gl3

K ∼ ðlK=pÞ7=5 [20]; experiments on tightly entangled
F-actin solutions [25] indicate a gradual crossover from
ðlK=pÞ7=5 to ðlK=pÞ4=3 scaling as ðlK=pÞ increases.
In each of these scaling regimes, the dimensionless plateau

modulus for well-entangled chains can be written as [26]

Gl3
K

kBT
∼
�
lK

p

�
μ

¼ λμl2μ
K ; ð4Þ

where μ is a characteristic scaling exponent. The correspond-
ing scalingof the tube diametera and entanglement lengthLe
follow immediately from Eqs. (2)–(4):

a ¼
ffiffiffiffiffiffi
Ne

p
b ∼ lK

�
lK

p

�ð1−μÞ=2
∼ λð1−μÞ=2l2−μ

K ð5Þ

and

Le ¼
λkBT
G

∼ lK

�
lK

p

�
1−μ

∼ λ1−μl3−2μ
K ; ð6Þ

where λ≡ ðlKpÞ−1 ∼ ϕ=d2 reflects the ϕ dependence.
Wang showed that λ-based expressions like Eqs. (4)–(6)
describe the scaling of entanglement-related quantities more
accurately than earlier C∞-based expressions [30].
Thus, if universal power-law dependencies of these

entanglement-related quantities are assumed, the known
results for flexible, semiflexible, and stiff melts (and also
for melts and solutions) are incompatible with each other.
This problem was first noticed by Colby et al. [31] and by
Fetters et al. [22]. Later it was analyzed in greater detail by
Uchida et al. [13], who proposed expressions for a=lK and
Le=lK that accurately describe results for flexible and stiff
systems. More recently, it has been discussed by Milner
[32,33], who suggested that (i) one has to take care about
the ranges of validity of the exponent μ, (ii) the Lin-
Noolandi ansatz (a ∼ p [16,17]) breaks down for lK ≳ a,
and (iii) the packing length cannot drop below the effective
chain diameter, i.e., p ≥ d. The fact that Eqs. (2) and (3)
appear to hold for all isotropic polymer liquids suggests
that universal expressions that describe all three regimes as
well as the crossovers between them exist, but none have
yet been developed.
To resolve this issue, we perform molecular dynamics

(MD) simulations of Kremer-Grest bead-spring [34] poly-
mer melts with a wide range of chain stiffnesses. All
systems are composed of Nch linear chains of N monomers,
with NchN ¼ 104 400. Periodic boundary conditions are
applied along all three directions of cubic simulation cells.
All monomers have mass m and interact via the truncated
and shifted Lennard-Jones potentialULJðrÞ ¼ 4ϵ½ðσ=rÞ12 −
ðσ=rÞ6 − ðσ=rcÞ12 þ ðσ=rcÞ6�, where ϵ is the intermonomer
binding energy, σ is the Lennard-Jones unit of length, and
rc is the cutoff radius. Covalent bonds connecting con-
secutive monomers along chain backbones are modeled
using the finite extensible nonlinear elastic (FENE) poten-
tial UFENEðrÞ¼−ðkFENER2

0=2Þln½1−ðr=R0Þ2�, with kFENE ¼
30ϵ=σ2 and R0 ¼ 1.5σ. These choices set l0 ≃ 0.97σ.
Angular interactions between three consecutive beads
along chain backbones are modeled using the bending
potential UbðθÞ¼kbendð1−cosθÞ, where θ¼cos−1ðb̂i ·b̂iþ1Þ
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is the angle between consecutive bond vectors bi and biþ1.
All MD simulations are performed using LAMMPS [35].
To produce melts ranging from fully flexible to stiff, we

simulate systems with 0 ≤ kbend ≤ 12.5ϵ. Systems are first
thoroughly equilibrated at number density ρ ¼ 0.7σ−3 or
ρ ¼ 0.85=σ−3 and temperature T ¼ 2.0ϵ=kB [36], then run
for at least one more disentanglement time (τd) to obtain
good statistics for our subsequent analyses. We employ
purely repulsive interactions (rc ¼ 21=6σ) for the ρ ¼
0.7σ−3 systems and moderate-range attractive interactions
(rc ¼ 27=6σ) for the ρ ¼ 0.85=σ−3 systems; these parameter
choices produce a sharp thermally driven isotropic-nematic
transition at kbend ≃ 11.5ϵ for ρ ¼ 0.85σ−3 and a much
more gradual transition for ρ ¼ 0.7σ−3. Equilibrating the
stiff-chain isotropic and nematic systems requires a non-
standard protocol [37]. The attractive part of the inter-
actions is not necessary to reproduce the results discussed
below; the key difference between the ρ ¼ 0.7σ−3 and ρ ¼
0.85σ−3 systems is their different λ.
We perform topological analyses of statistically indepen-

dent equilibrated-melt snapshots using the Z1 algorithm
[11]. The code returns each chain’s number of kinks
(entanglements) Z. We calculate Ne using the ideal
“M-kink” estimator derived in Ref. [46]: N−1

e ¼dhZi=dN,
where the average is taken over all chains and statistically
independent melt configurations having the same kbend. This
estimator can be employed here because hZi is approxi-
mately linear in N for all kbend over the chain length range
(50 ≤ N ≤ 100) we study.
Figure 1(a) showsZ1 results for all systems. For bothρ,Ne

decreases sharply with C∞ at small C∞, decreases progres-
sively less sharply as C∞ increases, and passes through a
minimum atC∞ ¼ C�

∞ðρÞ. We find that theC∞-dependence
of the measured Ne for C∞ ≤ C�

∞ðρÞ is quantitatively
captured (for a given λ) by a sum of three terms:

NeðC∞Þ ¼ αC−3
∞ þ βC−1

∞ þ γC1−2ε
∞ : ð7Þ

Our results are consistent with 0.25≲ ε≲ 0.4; below, we
will assume ε ¼ 1=3. Values forC�

∞ðρÞ and all parameters in
Eq. (7) are given in Table I.
In light of the above scaling arguments (which imply

Ne ∼ ðρl3
0Þ1−μC3−2μ

∞ [26]‘), the contributions to the mea-
suredNe with numerical prefactors α, β, and γ, respectively,
correspond to μ ¼ 3, μ ¼ 2, and μ ¼ 1þ ε ¼ 4=3. Since
the entanglement length NPPA

e measured by primitive path
analyses (PPA) is roughly 3NZ

e =2 [46,47], the minima in
Fig. 1(a) occur at C∞ ≃ NPPA

e . This coincides with Milner’s
operational definition [33] of the crossover between the
semiflexible and stiff-chain regimes: Ne ≃ C∞ and a ≃ lK .
The physical interpretation of this crossover is that it occurs
when entangled strands and Kuhn segments coincide.
One potential model-agnostic, microstructural reason for

the nonmonotonicity of NeðC∞Þ is that local nematic order

reduces entanglement and hence the minima in Ne corre-
spond to the onset of this order. Figure 1(b) shows results
for the radially symmetric bond-orientational correlation
function

FbbðΔÞ ¼ hjb̂iðRiÞ · b̂jðRi þ ΔijÞji −
1

2
ð8Þ

for selected ρ ¼ 0.85σ−3 systems [48]. FbbðΔÞ is a sensi-
tive measure of scale-dependent nematic order that is
positive when bond vectors separated by a midpoint-
midpoint distance Δ are correlated, and zero when they
are uncorrelated. The data show that the value of the first
minimum in FbbðrÞ, Fmin

bb , is negative for kbend=ϵ < 10 and
positive for kbend=ϵ > 10, i.e., Fmin

bb is negative for C∞ <
C�
∞ and positive for C∞ > C�

∞. Positive Fmin
bb indicate that

chains are locally aligned; we find that when Fmin
bb > 0,

chains also remain aligned out to considerably larger Δ.
Analogous results hold for the ρ ¼ 0.7σ−3 systems. Strictly
speaking, Eqs. (2)–(6) hold only for isotropic melts and
solutions, which lack even local nematic order. For this

(a)

(b)

FIG. 1. Relation of entanglement to local structure. Panel (a):
Ne vs C∞ ¼ lK=l0 for our Kremer-Grest melts [37]. Z1 data
(blue and green symbols) and the analytic expression given in
Eq. (7) (red and orange curves). The dashed and dotted vertical
lines indicate C�

∞ðρÞ for ρ ¼ 0.85σ−3 and ρ ¼ 0.7σ−3 systems.
Panel (b): FbbðΔÞ for selected kbend for the ρ ¼ 0.85σ−3 systems.

TABLE I. Stiffness at maximal entanglement and parameter
values for Eq. (7) for dense Kremer-Grest melts at kBT ¼ 2.0ϵ.

ρσ3 λσ2 α β γ C�
∞

0.85 0.817 171� 3 23.8� 0.9 1.47�.09 9.63
0.7 0.673 303� 3 20.1� 0.9 2.05�.07 11.43
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reason, we included only data forC∞ < C�
∞ðρÞ in the fits of

the Z1 data to Eq. (7).
Uchida et al. showed that primitive path network-

viscoelastic property relations are system independent,
i.e., the relation G ¼ ρkBT=Ne remains valid over the
entire range of chain stiffnesses for which systems remain
isotropic [13]. The fact thatNe can be expressed as a sum of
contributions from flexible-, semiflexible-, and stiff-chain
entanglement mechanisms [i.e., Eq. (7)] that is quantita-
tively accurate for all C∞ < C�

∞ðρÞ suggests that corre-
sponding expressions can be found for the tube diameter
and plateau modulus. We now attempt to do so.
The identity lK=p ¼ ρl3

0C
2
∞ leads to another analytic

expression for the reduced entanglement length that is
equivalent to Eq. (7):

Ne

C∞
≡ Le

lK
¼ c1

�
lK

p

�
−2

þ c2

�
lK

p

�
−1

þ c3

�
lK

p

�
−ε
: ð9Þ

Plugging the above values of (α, β, γ) into Eq. (9) yields
the values of its c-coefficients: for ρ ¼ 0.85σ−3, c1 ¼
αðρl0Þ2 ≃ 97.5, c2 ¼ βðρl3

0Þ ≃ 17.9, and c3 ¼ γðρl3
0Þε ≃

1.34. Thus, the dimensionless plateau modulus is

Gl3
K

kBT
¼

�
c1

�
lK

p

�
−3

þ c2

�
lK

p

�
−2

þ c3

�
lK

p

�
−ð1þεÞ�−1

:

ð10Þ
The identity a ¼ lKðLe=lKÞ1=2 leads to an analytic expres-
sion for the reduced tube diameter:

a
lK

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1

�
lK

p

�
−2

þ c2

�
lK

p

�
−1

þ c3

�
lK

p

�
−ε

s
: ð11Þ

The validity of Eqs. (9)–(11) should be independent of
chain stiffness and thickness (i.e., “chemistry”) as well as
chain length. In particular, the fcig in Eqs. (9)–(11) should
be chemistry independent because (as shown by Fetters
[22–24]) the chemistry dependence is contained in lK
and p.

Figure 2 compares the predictions of Eqs. (9)–(11) to
MD=Z results for these quantities. Remarkably, results for
all systems with C∞ ≤ C�

∞ðρÞ collapse onto single master
curves even though the fcig values in Eqs. (9)–(11) were
calculated using only the ρ ¼ 0.85σ−3 data. These collap-
ses are nontrivial because only the values of ρ, l0, C∞, and
NM-kink

e taken from the MD and Z simulations were used to
evaluate the estimates of Le=lK, Gl3

K=kBT, and a=lK; no
additional fitting was performed. It is evident that Eqs. (7)
and (9) quantitatively capture the crossovers between
the μ ¼ 3, μ ¼ 2, and μ ¼ ð1þ εÞ scaling regimes.
Consequently, Eqs. (10)–(11) also quantitatively capture
these crossovers. The intermediate-stiffness (μ ¼ 2) regime
can be roughly defined by the criteria α=β ≤ C2

∞ ≤
ðβ=γÞ1=ð1−εÞ [i.e., 2.7 ≤ C∞ ≤ 8.1] or equivalently c1=c2 ≤
lK=p ≤ ðc2=c3Þ1=ð1−εÞ [i.e., 5.4 ≤ lK=p ≤ 48], or alterna-
tively by plotting the local scaling exponent [37]

μ�
�
lK

p

�
¼ ∂½lnðGl3

K=kBTÞ�
∂½lnðlK=pÞ�

¼ 3þ lK
∂ lnG
∂lK

: ð12Þ

As shown in the inset to panel (b), μ� decreases rather
smoothly from ∼8=3 to ∼8=5 over the range of (lK=p)
considered here. We remain agnostic about the precise
value of ε, but we have found no evidence that it is outside
the range 1=3 ≤ ε ≤ 2=5 specified by Morse [20].
Equations (9)–(11) are nonstandard and require

interpretation. Recall that the entanglement length Ne
can be regarded as a dimensionless elastic compliance:
Ne ¼ ρkBT=G. One physically plausible interpretation of
Eqs. (7) and (9) is that Ne is, in general, a sum of three
elastic compliances that add in series, where the compli-
ances αC−3

∞ , βC−1
∞ , and γC1−2ε

∞ , respectively represent the
contributions of μ ¼ 3-, 2-, and (1þ ε)-entanglement
mechanisms to G. If this were true, the contributions of
their associated elastic moduli G3l3

K=kBT ¼ c−11 ðlK=pÞ3,
G2l3

K=kBT¼c−12 ðlK=pÞ2, andG1þεl3
K=kBT¼c−13 ðlK=pÞ1þε

to the overall modulus would be given by the equation

(a)

(b)

(c)

FIG. 2. Le=lK ,Gl3
K=kBT, and a=lK vs lK=p for our Kremer-Grest melts. Blue and green symbols in panels (a)–(c) respectively show

results for Le=lK ≡ NM-kink
e =C∞, Gl3

K=kBT ≡ ρl3
0C

3
∞=NM-kink

e , and a=lK ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NM-kink

e =C∞
p

vs lK=p≡ ρl3
0C

2
∞, where C∞ is

calculated from systems’ chain statistics [Eq. (1)]. Orange curves show Eqs. (9)–(11) with the fcig given below and ε ¼ 1=3. The
inset to panel (b) shows the local scaling exponent μ� calculated from Eq. (10) using Eq. (12).
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G ¼
�
1

G3

þ 1

G2

þ 1

G1þε

�
−1
: ð13Þ

Equation (10) indeed has this form. Our interpretation of
Eqs. (9)–(11) is that the previously identified [16–20]
contributions of flexible-, semiflexible-, and stiff-chain-
entanglement mechanisms to G can be mathematically
represented as elastic springs arranged in series. In this
picture, G is dominated by the smallest of fG1þε; G2; G3g,
and the previously identified scaling regimes are recovered
when one of the Gi is small compared to the other two.
However, we believe that Eqs. (9)–(11) do not in fact
represent three mechanisms of network elasticity that act
independently; after all, there is no test that can determine
whether a given entanglement is flexible, semiflexible, or
stiff. Instead, these equations are simply functional forms
that capture how the connections between a polymer melt’s
local structure and its degree of entanglement vary with
chain stiffness and contour length density.
In conclusion, we have in this Letter derived unified

analytic expressions for the reduced entanglement length,
plateau modulus, and tube diameter of polymer melts that
appear to be valid over the entire range of chain stiffnesses
for which systems remain isotropic. Our results are com-
patible with previous scaling theories [13,16–20,33] as well
as experimental results [22–25,49] for systems that span
this range, but go beyond previous results by capturing the
crossovers between the μ ¼ 3-, 2-, and (1þ ε)-scaling
regimes and providing the relevant numerical prefactors.
In particular, while Uchida et al. derived crossover expres-
sions [13] for Le=lK, Gl3

K=kBT, and a=lK that are
comparable to Eqs. (9)–(11) and fit results for flexible
melts and stiff solutions very well, their expressions lacked
the μ ¼ 2 terms (i.e., the c2 terms) and hence did not
accurately capture results for semiflexible melts [37].
We emphasize that Eqs. (9)–(11) are intended only for

dense melts and very concentrated solutions. They must
eventually break down as ϕ decreases because they cannot
capture the crossover to the Colby-Rubinstein (μ ¼ 7=3)
scaling [21] observed in semidilute solutions [28,29,50,51].
Future work will consider solutions and will examine how
expressions like Eqs. (9)–(11) break down as ϕ decreases.
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