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Simulations are used to examine the microscopic origins of strain hardening in polymer glasses. While
stress-strain curves for a wide range of temperature can be fit to the functional form predicted by entropic
network models, many other results are fundamentally inconsistent with the physical picture underlying these
models. Stresses are too large to be entropic and have the wrong trend with temperature. The most dramatic
hardening at large strains reflects increases in energy as chains are pulled taut between entanglements rather
than a change in entropy. A weak entropic stress is only observed in shape recovery of deformed samples when
heated above the glass transition. While short chains do not form an entangled network, they exhibit partial
shape recovery, orientation, and strain hardening. Stresses for all chain lengths collapse when plotted against a
microscopic measure of chain stretching rather than the macroscopic stretch. The thermal contribution to the
stress is directly proportional to the rate of plasticity as measured by breaking and reforming of interchain
bonds. These observations suggest that the correct microscopic theory of strain hardening should be based on
glassy state physics rather than rubber elasticity.
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I. INTRODUCTION

Glass forming polymers are of great industrial importance
and scientific interest. Their unique mechanical properties
arise from the connectivity and random-walk-like structure
of the constituent chains. At large strains, the stress increases
as the chain molecules orient, in a process known as strain
hardening. Strain hardening suppresses strain localization
�crazing, necking, shear banding� and is critical in determin-
ing material properties such as toughness and wear resis-
tance.

Traditional theories of glassy strain hardening �1,2� as-
sume that polymer glasses behave like crosslinked rubber,
with the number of monomers between crosslinks equal to
the entanglement length Ne. The increase in the stress � due

to deformation by a stretch tensor �̄ is attributed to the de-
crease in entropy as polymers stretch affinely between en-
tanglements. Beyond the initial plastic flow regime, entropic
network models predict �2�

���̄� = �flow + GRg��̄�L−1�h�/3h , �1�

where �flow is the plastic flow stress, GR is the strain harden-

ing modulus, L−1 is the inverse Langevin function, g��̄� de-
scribes the entropy reduction for ideal Gaussian chains, and
L−1�h� /3h corrects for the finite length of segments between
entanglements. The value of Ne enters in h, which is the ratio
of the Euclidean distance between entanglements to the con-
tour length.

Entropic network models have had much success in fitting
experimental data �2–5�. However, serious discrepancies be-
tween the models and experiments are revealed in trends
with temperature and the values of fit parameters �6�. En-
tropic models predict GR=�ekBT, where �e is the entangle-
ment density. This prediction is about 100 times smaller than

values measured near the glass transition temperature Tg �7�.
Moreover, GR increases monotonically as T decreases �7,8�,
while any entropic stress must drop to zero as T→0. Param-
eters such as GR and Ne, which entropic models assume to be
material constants, must be adjusted significantly to fit data
for different strain states �i.e., uniaxial or plane strain� �9�.
Fits to the shape of strain hardening curves also yield smaller
values of Ne than those obtained from the plateau moduli of
melts �2�.

A more fundamental conceptual difficulty with entropic
models is that, unlike rubber, glasses are not ergodic. For T
�Tg, thermal activation is not sufficient to allow chains to
sample conformations freely. Rearrangements occur mainly
under active deformation �10,11� and at a frequency that
scales with the strain rate �12�. In such far from equilibrium
situations, the relevance of entropy is unclear. In addition,
experiments �13–15� and simulations �16–18� show that the
internal energy contributes to strain hardening, but this is not
included in entropic network models.

Molecular simulations allow a full analysis of the mecha-
nisms of large strain deformation in glassy polymers
�10,18–26�. In recent papers �8,17�, we have examined the
origins of strain hardening using a coarse-grained bead-
spring model �27�. As in experiments, numerical values of
GR are much larger than predicted by entropic models and
show the opposite trend with temperature �8�. A direct cor-
relation between �flow and GR was discovered that allowed
curves for different interactions, strain rates and temperatures
to be collapsed �8�. Substantial strain hardening was ob-
served for chains that are shorter than Ne and thus do not
form a network �17,25�. For chains of all lengths, strain hard-
ening was directly related to strain-induced orientation and
the rate of plastic rearrangement �17�.

This paper extends our simulation studies in several direc-
tions. Uniaxial and plane strain compression are examined
for a wide range of Ne, T, and chain lengths. Stress curves
for all entangled systems can be fit to Eq. �1�. The fits con-
firm the connection between �flow and GR �8�, which both
drop linearly to zero as T rises to Tg. This observation moti-*robhoy@mrl.ucsb.edu
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vates a modification of Eq. �1�. Using Tg and the fit to a
stress-strain curve at one temperature, the model predicts
strain hardening curves for all T�Tg remarkably well. How-
ever, as in experiments �9�, it is necessary to vary parameters
such as GR and Ne in unphysical ways in order to fit curves
for different strain states.

Direct examination of entropic and energetic contribu-
tions to strain hardening reveals qualitative failures of net-
work models. The rapid hardening at large strains that is fit
by the Langevin correction in Eq. �1� does not reflect a re-
duction in entropy. Instead there is a rapid rise in energetic
stress as chains are pulled taut between entanglements.
Variation in the energetic contribution for different strain
states leads to changes in fit values of Ne. For all chain
lengths and Ne, we find that the thermal part of the stress
correlates directly with breaking and reformation of van der
Waals bonds during deformation. This provides an explana-
tion for the correlation between GR and �flow.

Remarkable shape recovery is observed in experiments
when highly deformed samples are unloaded and heated
slightly above Tg �28�. Network models assume this recovery
is driven by a “back stress” related to the entropy of the
entanglement network, and shape recovery is often seen as
providing evidence for entropic strain hardening. Our simu-
lations also show dramatic shape recovery that is driven by
orientational entropy. However, the magnitude of the associ-
ated stress is only of order �ekBT and thus much too small to
be significant in strain hardening.

Changes in microscopic chain conformations are also ex-
plored. While Eq. �1� assumes affine deformation of seg-
ments of length Ne, the observed deformation becomes in-
creasingly subaffine as strain increases. This reflects a
straightening of segments between entanglements that dis-
turbs the local structure of the glass and increases the internal
energy. Although unentangled chains do not form a network,
they still undergo significant orientation during strain �8,25�.
For all chain lengths, the thermal contribution to the stress is
directly related to the orientation of chains on the end-to-end
scale rather than the macroscopic stretch �17,29�.

The following section describes the potentials, geometry
and strain protocol used in our simulations. Next, fits to en-
tropic network models are examined, and an extension that
incorporates the correlation between �flow and GR is pre-
sented. This is followed by a discussion of the energetic and
entropic contributions to the stress and the role of entropic
back stresses in shape recovery. Sections III D and III E ex-
plore the effect of chain length and orientation and demon-
strate the connection between plastic deformation and the
thermal component of the stress. The final section presents a
summary and conclusions.

II. POLYMER MODEL AND METHODS

We employ a coarse-grained bead-spring polymer model
�27� that incorporates key physical features of linear ho-
mopolymers such as covalent backbone bonds, excluded-
volume and adhesive interactions, chain stiffness, and the
topological restriction that chains may not cross. Each linear
chain contains N spherical monomers of mass m. All mono-

mers interact via the truncated and shifted Lennard-Jones
potential:

ULJ�r� = 4u0��a

r
�12

− �a

r
�6

− � a

rc
�12

+ � a

rc
�6� , �2�

where rc is the potential cutoff radius and ULJ�r�=0 for r
�rc. We express all quantities in terms of the molecular
diameter a, energy scale u0, and characteristic time �LJ
=	ma2 /u0.

Covalent bonds between adjacent monomers on a chain
are modeled using the finitely extensible nonlinear elastic
�FENE� potential

UFENE�r� = −
kR0

2

2
ln�1 − �r/R0�2� , �3�

with the canonical parameter choices �27� R0=1.5a and k
=30u0 /a2. The equilibrium bond length l0
0.96a. The
FENE potential does not allow chain scission, but the maxi-
mum tensions on covalent bonds for the systems studied here
are well below the critical value for scission in breakable-
bond models �30�.

As a means of varying Ne, we introduce chain stiffness
using the bending potential

Ubend��� = kbend�1 − cos �� , �4�

where � is the angle between consecutive covalent bond vec-
tors along a chain. Increasing kbend increases the root-mean-
squared �rms� end-to-end distance of chains Ree. The chain
stiffness constant C	��Ree

2  / �N−1�l0
2 for well-equilibrated

�31� melt states rises from 1.8 to 3.34 as kbend is increased
from 0 to 2.0u0. The value of Ne decreases from about 70 to
about 20 over the same interval �32�. The key parameter in
entropic network models is the number of statistical seg-
ments per entanglement Ne /C	 �Table I�.

The initial simulation cell is a cube of side length L0,
where L0 is greater than the typical end-to-end distance of
the chains. Nch chains are placed in the cell, with periodic
boundary conditions applied in all three directions. Each ini-
tial chain configuration is a random walk of N−1 steps with
the distribution of bond angles chosen to give the targeted
large-scale equilibrium chain structure. In particular the
mean value of cos��� is adjusted so that

C	 =
1 + �cos���
1 − �cos���

. �5�

Nch is chosen so that the total number of monomers Ntot
=NNch is 250 000 �L0=66.5a� for flexible �kbend=0� chains

TABLE I. Chain statistics in fully entangled glasses
�N /Ne�7�.

kbenda2 /u0 Ne C	 Ne /C	

0.0 71 1.70 42

0.75 39 2.05 19

1.5 26 2.87 9

2.0 22 3.29 7
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and 70 000 �L0=43.5a� for semiflexible �kbend�0� chains.
The initial monomer number density is �=0.85a−3.

After the chains are placed in the cell, we perform mo-
lecular dynamics �MD� simulations. Newton’s equations of
motion are integrated with the velocity-Verlet method �33�
and time step 
t=0.007�LJ−0.012�LJ. The system is coupled
to a heat bath at temperature T using a Langevin thermostat
�34� with damping rate 1.0 /�LJ. Only the peculiar velocities
are damped.

We first equilibrate the systems thoroughly at T
=1.0u0 /kB, which is well above the glass transition tempera-
ture Tg
0.35u0 /kB �35�. The cutoff radius rc is set to 21/6a,
as is standard in simulations of melts with the bead-spring
model �27,32�. For well-entangled chains, the time required
for diffusive equilibration is prohibitively large. To speed
equilibration we use the double-bridging-MD hybrid �DBH�
algorithm �31�, where Monte Carlo moves that alter the con-
nectivity of chain subsections are periodically performed.

Glassy states are obtained from well-equilibrated melts by
performing a rapid temperature quench at a cooling rate of

Ṫ=−2�10−3u0 /kB�LJ. We increase rc to its final value, typi-
cally 1.5a, and cool at constant density until the pressure is
zero. The quench is then continued at zero pressure using a
Nose-Hoover barostat �33� with time constant 10�LJ until the
desired T is reached. Larger values of rc lead to higher final
densities and larger stresses at all strains �36�, but we have
checked that using values of rc as large as 2.6a does not
change the conclusions presented below. Indeed, stress-strain
curves for different rc�1.5a collapse when normalized by
�flow �8�. In this paper T varies from 0 to 0.3u0 /kB. Simula-
tions at T=0 are not directly relevant to experiments, but are
useful to gain theoretical understanding of polymer deforma-
tion in the limit where thermal activation is not important. To
operate in the T→0 limit, we remove the Gaussian noise
term from the standard Langevin thermostat and retain the
viscous drag term.

Values of Ne �Table I� are measured by performing primi-
tive path analyses �PPA� �32,37�. Details of the PPA proce-
dure are the same as those used for undiluted systems in our
recent paper �8�. Melt entanglement lengths are consistent
with values of Ne from the melt plateau moduli �32�.
Quenching melt states into a glass has little effect on the
values of Ne determined from PPA �38�. The changes in en-
tanglement density �e=� /2Ne upon cooling are primarily
due to a 15% increase in �. The conclusion that glasses in-
herit the melt value of Ne is consistent with experimental
�39� and simulation �30� studies of the craze extension ratio,
as discussed in Sec. III A. However, it is inconsistent with
some entropic models of strain hardening �3� that assume
that �e increases rapidly as T decreases.

The values of N employed in this paper are 12–500 for
flexible chains and 4–350 for semiflexible chains, spanning
the range from the unentangled to the fully entangled �N
Ne� limits. It is important to note that unentangled systems
�N�Ne� are often brittle. This may severely limit the maxi-
mum strain that can be studied in experiments and compli-
cate comparison to our simulations.

In fundamental studies of strain hardening �2,7,40�, com-
pressive rather than tensile deformation is preferred because

it suppresses strain localization. This allows the stress to be
measured in uniformly strained systems. The rapidity of the
quench used here minimizes strain softening, which in turn
yields ductile, homogeneous deformation even at the lowest
temperatures and highest strains considered.

We employ two forms of compression: Uniaxial and plane
strain. The stretch �i along direction i is defined as Li /Li

0,
where Li

0 is the cell side length at the end of the quench. In
uniaxial compression, the systems are compressed along one
direction, z, while maintaining zero stresses along the trans-
verse �x ,y� directions �41�. In plane strain compression, the
systems are also compressed along the z direction, and zero
stress is maintained along the x direction, but the length of
the system along the y direction is held fixed ��y =1�.

Compression is performed at constant true strain rate �̇

= �̇z /�z, which is the favored protocol for strain hardening
experiments �40�. The systems are compressed to true strains
of �=−1.5, corresponding to �z=exp�−1.5�
0.22, for
uniaxial compression and �=−1.2 ��z
0.30� for plane strain
compression. These strains are similar to the highest achiev-
able experimentally �13� in glassy state compression.

Simulations were performed at �̇ between −10−5 /�LJ and
−10−3 /�LJ. As in previous studies of strain hardening �8� and
the initial flow stress �35,42�, a weak logarithmic rise in
stress with strain rate was observed for ��̇ � �3�10−4. This
small rise does not change the conclusions drawn in the fol-
lowing sections and a similar logarithmic rise is observed in
many experiments �43�. Thus, while our simulations are per-
formed at much higher strain rates than experiments, we ex-
pect that they capture experimental trends. A more rapid
change in behavior was observed for ��̇ � �3�10−4 and
qualitative changes in behavior can occur at the much higher
rates employed in some previous simulations �25,26�. For
example, the time for stress equilibration across the sample
is of order L0 /cs where cs is the lowest sound velocity. When
this time is larger than the time between plastic rearrange-
ments, then each rearrangement occurs before the stress field
around it has fully equilibrated in response to surrounding
rearrangements. The decorrelated relaxation of different re-
gions leads to a more rapid rise in yield stress with rate�35�.
The effect of rate on the relaxation of unentangled chains is
discussed in Sec. III D.

III. RESULTS

A. Comparison to eight-chain model

The eight chain model �2� has been very successful in
describing the functional form of stress-strain curves and is
widely used to fit experimental results �28�. It assumes that
the entanglement network deforms affinely at constant vol-
ume and employs a body centered cubic network geometry
with eight chains per node. The stretch of each segment be-
tween nodes is then �chain= ���x

2+�y
2+�z

2� /3�1/2, yielding h
=�chain /	Ne /C	 in Eq. �1�. This choice of network was the
main advance of the eight chain model over previous en-
tropic models �1,44�. It allows the model to fit stress-strain
curves for various strain states, i.e., shear �4,5� and uniaxial
�2,3� or plane strain �2,4� compression �45,70�. The predic-
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tion for the difference between principal stresses along axes i
and j in the strain hardening regime is

�i − � j = �flow
ij + GR

L−1�h�
3h

��i
2 − � j

2� , �6�

where �flow
ij is an independently modeled, rate- and

temperature-dependent plastic flow stress �43,44�.
Equation �6� simplifies for the cases of uniaxial and plane

strain compression considered here and in many experi-
ments. For uniaxial strain only �z is nonzero and the constant
volume constraint implies �x=�y =�z

−0.5. For plane strain
compression, the constant volume constraint requires �x
=�z

−1 and both �z and �y are nonzero. Equation �6� implies a
relation between the strain hardening of �z and �y, but the
latter does not appear to have been measured in experiments.

Despite its wide use, there are fundamental difficulties
with the eight chain model that were noted in the Introduc-
tion. As a rubber-elasticity based model, it predicts GR
=�ekBT. This prediction is about 100 times too small at T
�0.9Tg if values of �e are estimated from the melt plateau
modulus and has the wrong trend with decreasing T �6,7�.
Some models �3,46� assume �e is much larger than in the
melt and rises rapidly as T decreases below Tg in order to fit
experiments. However, studies of crazing in polymer glasses
do not indicate any increase in �e over the melt �39,42�. A
constant entanglement density is also consistent with the idea
that entanglements represent topological constraints and the
observation that the topology does not evolve significantly
below Tg. The extra entanglements added in network models
as T decreases may capture the effect of glassy constraints
associated with energy barriers, but it is not clear that it is
natural to treat such constraints within a rubber-elasticity
framework.

Another shortcoming of the eight chain model and more
recent work �43,46� is that the flow stress must be introduced
as an independent additive constant. Experiments �47� and
our recent simulations �8� suggest that �flow and GR scale in
the same way and are controlled by the same physical pro-
cesses. For example, both decrease nearly linearly as T in-
creases �7,47�, vanish at a strain-rate dependent Tg, and in-
crease logarithmically with strain rate �48�. Indeed complete
strain hardening curves for different rates and cohesion
strengths collapsed when scaled by �flow �8�. This suggests
that �flow is most naturally included as a multiplicative rather
than additive factor. To further test this idea we have exam-
ined fits to the eight-chain model for a range of kbend, T, and
strain states.

Figure 1 shows the compressive stress −�z as a function
of �z for uniaxial compression of systems with kbend=1.5u0.
Near �z=1 there is a sharp elastic increase, followed by
yield. Both simulations and experiments �13,28,42,49,50�
find that this initial region �0.8��z�1� is sensitive to the
past history of the sample, including the quench rate and
aging. At greater compressions the system is “rejuvenated”
and the stress becomes independent of history �13�. Our dis-
cussion will focus on this strain hardening regime.

As with experimental data, the strain hardening region
���0.8� of all curves can be fit �within random stress fluc-

tuations� by adjusting the parameters ��flow
zx , GR, Ne� in Eq.

�6�. The quality of such fits is illustrated for T=0.2u0 /kB.
Typical uncertainties in fit parameters are about 10%. For
example, data at all temperatures can be fit with Ne=15�1
and best fit values lie within this range. Note that the value of
Ne=26 obtained from the plateau modulus and PPA is sub-
stantially larger �32�. Fits of Eq. �6� to experiments �2� also
tend to yield smaller values of Ne than the plateau modulus.

As in previous work �7,8,47�, fit values of both the flow
stress and hardening modulus decrease linearly with tem-
perature. The temperature where they extrapolate to zero,
Tg
0.41u0 /kB, is consistent with previous results for the
glass transition temperature for this strain rate �35�. Data for
all temperatures can be fit with a fixed ratio ��GR /�flow
anywhere in the range from 0.5 to 0.7. This nearly constant
value of � provides further support for the idea that strain
hardening scales with flow stress.

The above observations can be incorporated into a modi-
fied eight chain model that describes the temperature depen-
dent strain hardening in terms of only four parameters �flow

0 ,
Tg, Ne and a temperature independent ratio �. Here �flow

0 is
the flow stress at T=0 and at other temperatures �flow
=�flow

0 �1−T /Tg�. The shear stress in the strain hardening re-
gime is written as

�i − � j = �flow
0,ij �1 −

T

Tg
��1 + �

L−1�h�
3h

��i
2 − � j

2�� . �7�

Note that Eq. �7� is equivalent to the usual eight-chain model
except that it imposes proportionality between the flow stress
and hardening modulus and assumes a linear temperature
drop in both. This reduction in parameters may be useful in
extrapolating experimental data, since values for one tem-
perature determine those at any other if Tg is known.
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FIG. 1. �Color online� Compressive stress −�z as a function of
�z for uniaxial compression at kBT /u0= 0, 0.1, 0.2, and 0.3 from top
to bottom. The chains had kbend=1.5u0 and �̇=−10−4 /�LJ. Solid
lines show a fit to the eight-chain model �Eq. �6�� at kBT /u0=0.2
and the extrapolation of this fit to other temperatures using the
modified model �Eq. �7��. The initial elastic rise and yield for 1
��z�0.8 are sensitive to aging and are not fit by the eight-chain
model.
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The solid lines in Fig. 1 show predictions of Eq. �7� based
on the fit at T=0.2u0 /kB: �flow

0 =0.634u0a−3, �=0.56, and
Ne=14.1. The predictions agree quite well with simulation
results over an extremely wide range of T /Tg. The largest
deviations are of order 10% at T=0 and the smallest �z.
There is a slight overprediction of the change in curvature
with increasing T that manifests as slight ��10% � increases
in � or decreases in Ne in best fits to the data, particularly at
T=0.3. Fits of the same quality are obtained for all kbend and
strain states �see Fig. 2�, suggesting that this simple extrapo-
lation may be widely applicable to data from simulations or
experiment.

A more stringent test of Eq. �7� is whether it is able to
predict stresses for multiple strain states with the same pa-
rameters. As pointed out by Arruda and Boyce �2�, uniaxial
and plane strain compression produce extremely different
changes in chain configuration. Under plane strain compres-
sion the chains all stretch in one direction, while in uniaxial
compression the chains stretch along all directions in the
plane perpendicular to the compression axis.

Figure 2 shows results for plane strain compression of the
same systems as Fig. 1. As before, excellent fits can be ob-
tained to Eq. �6� and extrapolations from fits at one tempera-
ture using Eq. �7� capture the variation in stress over the full

temperature range. Despite these successes, there are trou-
bling inconsistencies in the parameters of these fits. While
the values of GR for �z in plane strain and uniaxial compres-
sion are consistent �within our 10% uncertainty�, the value of
Ne is significantly higher for plane strain; Ne=20�2. In ad-
dition, the strain hardening of �y and �z in plane strain are
inconsistent. From Eq. �6�, the value of �y is determined up
to an additive constant from measurements of �z. The dashed
line in Fig. 2�b� shows this prediction for T=0 with the ad-
ditive constant adjusted to fit data at large �z. At all tempera-
tures the variation in �y is systematically smaller than pre-
dicted from �z. The decrease corresponds to a reduction in
GR for �y by about 20%. In contrast, best fit values of Ne for
�y and �z match to within 1%.

A strong dependence of model parameters such as GR and
Ne on strain state has also been noted experimentally �9�.
One possibility is that the strain state changes the role of
entanglements in ways that are not captured completely by
the eight-chain model. Another is that while the eight-chain
model provides a useful fitting function, it does not capture
the correct strain hardening mechanisms. In this case, fit pa-
rameters may not have direct physical significance. The scal-
ing of GR with �flow rather than T supports the view that
entropy is not the dominant source of stress and this is ex-
amined further below. It is also important to note that the fits
above assumed constant volume, but the simulation volume
decreased with strain by up to 8% for plane strain and large
kbend. Including the correct �i in Eq. �6� would change the
predicted stress by up to 15%. In the following section we
show that violations of the assumption of affine displacement
of entanglements can produce similar changes. Thus the fit
parameters compensate for changes that are not included in
the model, further reducing their direct relevance.

B. Dissipative and energetic stresses

Entropic network models assume that strain hardening
arises entirely from a reversible increase in the entropy of the
entanglement network. Experiments showed many years ago
that strain hardening is also associated with large increases in
internal energy �13�, but this observation has not been incor-
porated into published theoretical models. Simulations allow
us to separate the role of entropy and energy in strain hard-
ening.

For uniaxial and plane strain compression, the stress
along the compressive axis is directly related to the work W
done on the system per unit strain: �z=�W /��z. �z can be
separated into an energetic component �z

U and a thermal
component �z

Q using the first law of thermodynamics: dW
=dQ+dU, where U is the internal energy of the system and
dQ is the heat transfer away from the system. This implies

�z =
�W

��z
:�z

U =
�U

��z
:�z

Q =
�Q

��z
= �z − �z

U. �8�

These quantities are readily obtained from our simulation
data and could in principle be obtained by differentiating
results for W and Q from deformation calorimetry experi-
ments. Unfortunately existing studies �51–53� have not ex-
tended into the strain hardening regime.
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FIG. 2. �Color online� �a� Compressive stress −�z and �b� per-
pendicular stress −�y as a function of �z for plane strain compres-
sion at kBT /u0= 0, 0.1, 0.2, and 0.3 from top to bottom in each
panel. The chains had kbend=1.5u0 and �̇=−10−4 /�LJ. Solid lines
show a fit to the eight-chain model �Eq. �6�� at kBT /u0=0.1 and the
extrapolation of this fit to other temperatures using the modified
model �Eq. �7��. The dashed line in �b� shows the variation in �y

predicted by Eq. �6� and measured values of �z.
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Experimental data are frequently plotted in a manner de-
signed to isolate the Gaussian and Langevin contributions to

the strain �Eq. �1��. If �z is plotted against g��̄�=�z
2−�x

2, then
Eq. �6� predicts a straight line in the Gaussian limit �h�1�.
The Langevin correction ��3h�−1L−1�h�� adds an upwards
curvature. Since �x is not generally measured, experimental
stresses are plotted against a function g��z� that is deter-
mined by assuming constant volume. For uniaxial strain
g��z�=�z

2−1 /�z and for plane strain g��z�=�z
2−1 /�z

2.
Figure 3 illustrates the variation of total, thermal and en-

ergetic stresses with g under uniaxial and plane strain com-
pression for the most highly entangled system �Ne=22�. The
total stress for both strain states shows strong upward curva-
ture that is normally attributed to the Langevin correction. As
expected from entropic network models, the amount of cur-
vature decreases with increasing Ne �8�. However, Fig. 3
shows that this curvature is not related to entropy. Almost all
of the upward curvature is associated with the energetic con-
tribution to the stress, while �z

Q shows the linear behavior
expected for Gaussian chains. Similar behavior is observed
for all Ne and T, and we now discuss the trends in �Q and �U

separately.
For all systems, temperatures, and strain states the thermal

stress is well fit by the linear behavior expected for Gaussian
chains. There may be a small upwards curvature, particularly
for uniaxial compression, but it is comparable to statistical

fluctuations. Attempts to fit �z
Q to the eight chain model al-

ways require increasing Ne significantly above values ob-
tained from the melt plateau modulus.

We define a thermal hardening modulus Gtherm from the
slope of linear fits to �z

Q=�0+Gthermg��z�. Table II shows
values for Gtherm for uniaxial and plane strain compression
for various entanglement lengths at T=0.2u0 /kB. While
Gtherm is systematically higher for uniaxial compression, the
differences �10–30 % � are not large. In contrast, Gtherm de-
creases rapidly with increasing Ne. Rubber elasticity theories
for Gaussian chains would predict GR�Ne

−1 and it is interest-
ing that Gtherm appears to scale in this way. As shown in
Table II, changes in NeGtherm are within our statistical error
bars ��10% � and show no systematic trend with Ne.

Figure 4 shows �z
U during plane strain compression for

different Ne. Results are shown for T=0 because the ener-
getic stresses are the largest, but results at higher tempera-
tures show similar trends. The value of �U rises to a peak
near the yield point, and then drops to a nearly constant
value for �g � �1. The initial behavior for �g � �1 is nearly
independent of the entanglement length but does depend
weakly on age and strain rate. The behavior at slightly larger
�g� depends strongly on entanglement length �Fig. 4�. For
example, at T=0.2u0 /kB the ratio of the constant energetic
stress to the flow stress rises from about 4% for flexible
chains to 16% for the most entangled system. Similar ratios
are obtained for the T=0 data in Fig. 4.

Hasan and Boyce examined the enthalpy stored in
samples of polystyrene �PS�, polymethylmethacrylate
�PMMA�, and polycarbonate �PC� as a function of residual
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FIG. 3. �Color online� Total stress �solid lines� and thermal
�dashed lines� and potential energy �dot-dashed lines� contributions
for �a� uniaxial compression at kBT /u0=0.2 and �b� plane strain
compression at kBT /u0=0. The systems had kbend=2.0 �Ne=22�,
N=350 and �a� �̇=−10−5 /�LJ or �b� �̇=−10−4 /�LJ. Dotted lines show
best fits of �z to Eq. �7� with �a� Ne=15.5 and �b� Ne=22. Straight
lines are fits to �z

Q. Both �z and g are negative under compression.

TABLE II. Thermal moduli Gtherm in units of u0 /a3 for T
=0.2u0 /kB and �̇=−10−4 /�LJ. Error bars are about 10%.

Ne Gtherm
uniax Gtherm

plane NeGtherm
uniax NeGtherm

plane

22 1.3 1.0 28 23

26 1.0 0.75 27 20

39 0.57 0.50 22 20

71 0.37 0.34 26 24
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FIG. 4. �Color online� Energetic components of stress �z
U for

plane strain compression at T=0 with strain rate �̇=−10−4 /�LJ for
Ne=22 �solid line�, Ne=26 �dot-dashed line�, Ne=39 �dashed line�,
and Ne=71 �dotted line�.
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strain �13�. They found a sharp increase in enthalpy up to a
strain of about 20% ��g � =0.55� that was larger in annealed
samples than in rapidly quenched samples like those used
here. For quenched PS, the magnitude of the rise in energy
density is about 4 MPa. Values for the work performed are
difficult to extract from the paper, but as a rough estimate we
take the flow stress �55 MPa� times the strain �0.2� and find
11 MPa. Thus in the initial stages of deformation, of order a
third of the work is stored in energy. Calculating the same
ratio for our simulations gives values between 30 and 45%.

For strains from −0.2 to −0.8 ��g � =2.0� or larger, Hasan
and Boyce found a weak, nearly linear rise in enthalpy. This
corresponds to a constant �U like that observed in Fig. 4 for
intermediate �g�. Analysis of their figures �13� shows that the
ratio of �U to the flow stress increases from about 4% for PS
to 15% for PC. Since PC is more entangled than PS, this
trend is the same as observed in Fig. 4. Note that in both
simulations and experiments the fraction of work stored as
energy depends strongly on the strain amplitude. The fraction
stored during the initial rise to the flow stress is dependent on
sample age �13� and may be of order 50% or more �54,55�.
As �g� increases and �U remains constant, the fraction stored
as energy drops towards the much smaller value given by
�U /�flow.

Figure 4 shows a sharp rise in �U at the largest values of
�g�. The onset moves to smaller �g� and the magnitude of the
rise increases as Ne decreases. This rise is the source of al-
most all the curvature in the total stress. The experiments of
Hasan and Boyce �13� did not show this rise. One reason
may be that their experiments only extended to uniaxial
strains of −0.8 ��g � =2.0� for the most entangled systems.
However, their measurement is also limited to the residual
enthalpy after the sample is unloaded. Simulations were per-
formed to determine the amount of energy recovered during
unloading from different strains. The recovered energy is
relatively small in the region where �U has a small constant
value, but rises rapidly at larger strains. Indeed, almost all of
the energy that contributes to the sharp rise in �U at large �g�
is recovered when samples are unloaded. Thus experiments
could only observe this rise by using deformation calorim-
etry.

The rise in energetic stress at large �g� seems to occur
when segments of length Ne are pulled taut between en-
tanglements. To demonstrate this we examined changes in
chain statistics with stretch. Entropic network models as-
sume that the deformation of the entanglement network is
affine to the macroscopic stretch. An affine displacement
would, on average, increase the length of any chain segment
by a factor of �chain. This stretch can not apply at the smallest
scales since the length of chemical bonds l0 can not increase
significantly. As a result chains are pulled taut and deform
subaffinely on small scales. The larger the strain, the larger
the length of taut segments.

To illustrate this we compare the rms Euclidean distance
between monomers separated by n bonds R�n� to the affine
prediction Raff�n�. If R0�n� is the distance before stretching,
then Raff�n�=�chainR0�n�, where �chain

2 = ��x
2+�y

2+�z
2� /3. For

the case of plane strain, �chain
2 = ��z

2+1+�z
−2�V /V0�2� /3,

where �x has been eliminated by using the ratio V /V0 of the

final and initial volumes. Volume changes are normally ig-
nored, but are large enough to affect the plots shown below.

Figure 5�a� shows the ratio of the observed R�n� to the
affine prediction as a function of n /Ne for different g��z� and
Ne under plane strain. There is a clear crossover from sub-
affine behavior �R /Raff�1� to affine behavior �R /Raff
1�
with increasing n. In the subaffine regime at small n, chains
are pulled nearly taut. The crossover to affine behavior
moves to larger n as �g� increases, implying that chains are
pulled straight over longer segments. For chains with Ne
=39 the crossover remains slightly below Ne at the largest
strains considered here. However for Ne=22 the crossover
appears to reach Ne by �g � =5. At larger �g� the magnitude of
R /Raff decreases, but the region of rapid crossover appears to
remain near Ne. This suggests that the entanglements prevent
chains from stretching taut on longer scales.

Figure 5�b� shows there is a direct correlation between
subaffine deformation at Ne and the increase in the energetic
contribution to the stress. The values of �z

U from Fig. 4 are
replotted against R�Ne� /Raff�Ne� instead of �g� �56�. There is a
sharp rise in �z

U as R�Ne� /Raff�Ne� decreases below about
0.925. As seen in panel �a�, this corresponds roughly to the
point where the length of taut segments reaches Ne. This
suggests that the energetic stress arises when the entangle-
ment network begins to resist further deformation. As ex-
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FIG. 5. �Color online� �a� R�n� /Raff�n� for the same systems and
conditions as Fig. 4 with n scaled by Ne. Solid lines indicate Ne

=22 and dashed lines indicate Ne=39. Curves are for �g �=2.5, 5,
7.5, and 10 from top to bottom. �b� �z

U plotted against R /Raff evalu-
ated at n=Ne. This corresponds to evaluating �z

U along a vertical
slice of �a�. Solid, dot-dashed, dashed, and dotted lines indicate data
for Ne=22, 26, 39, and 71, respectively �56�.
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pected from this picture, we find a growing tension in cova-
lent bonds as �z

U rises. However, the maximum tensions in
the “worst case” scenario of plane strain compression for
Ne=22 are only about 100u0 /a, which is well below the
breaking strength 240u0 /a used in breakable-bond simula-
tions �30�.

The above findings help to explain some of the discrep-
ancies in the fit parameters for the eight-chain model. The
upwards curvature in plots of �z versus �g� comes from en-
ergetic terms rather than entropy. Fits to uniaxial and plane
strain give different Ne because the energetic contributions
are different. However the fit values are never far from Ne
because the sharp increase in �z

U occurs when segments of
length Ne are pulled taut. Figure 5�a� also indicates that the
entanglement network does not deform completely affinely
as assumed in the eight-chain model. Even at small strains
R�Ne� /Raff�Ne� is slightly less than one and this would pro-
duce significant ��10% � changes in the stress from Eqs. �6�
or �7� �57,71�.

Note that the deviations from affinity observed in Fig. 5
are significantly smaller than those predicted from rubber-
elasticity based models for the nonaffine deformations in en-
tangled polymers above Tg �58,59�. These models assume
that fluctuations about affine deformation are confined to the
“tube” formed by surrounding entanglements. They predict
nonaffine reductions in R�Ne� /Raff�Ne� that are about 50%
greater than our results at small strains. At the larger strains
where we find entanglements produce a significant energetic
stress, the disparity decreases. The discrepancy appears to
reflect the fact that the nonaffine displacements in our simu-
lations �8� are much smaller than the tube radius until the
energetic stress begins to dominate. Interestingly, the magni-
tude of the nonaffine displacements decreases slightly with
increasing rc, suggesting they are limited by cohesive inter-
chain interactions rather than entanglements. These observa-
tions provide further evidence that polymers in a glass are
not free to explore their tube as assumed in entropic models.
It would be interesting to extend these comparisons to melt
models to see what additional information can be obtained.

C. Reversibility and entropic back stresses

If the work performed in deforming a glass is entropic, it
should be reversible. However, large strain experiments per-
formed well below Tg show only �10% strain recovery upon
unloading �13�. Entropic network models postulate that there
is an entropic “back stress” �2� that favors further strain re-
duction but that relaxation is too slow to observe because of
the high viscosity of the glassy state �1�. As expected from
this picture, lowering the viscosity by heating even slightly
above Tg leads to nearly complete shape recovery of well-
entangled glasses �28�.

To see if similar behavior occurs in simulations, we
loaded samples uniaxially to �=−1.5 at �̇=−10−5 /�LJ and T
=0.2u0 /kB. The samples were then unloaded at the same ��̇�
and T until all �i were zero. Fully entangled samples �N
=350, Ne=39� recovered only 6% of the peak strain and
unentangled chains �N=16� recovered slightly less, �4%.
The result for entangled chains is comparable to experiments
�13�.

The samples were then heated to T=0.4u0 /kB over 100�LJ
and allowed to relax with a Nose-Hoover barostat imposing
zero stress in all three directions. Figure 6�a� shows the re-
sulting strain recovery. For the entangled system, an addi-
tional 87% of the strain was recovered after 105�LJ and the
rate of recovery remained significant at the end of this pe-
riod. In the unentangled system, 46% of the strain is recov-
ered, mainly in the first 2�104�LJ. While this recovery is
substantially smaller than for entangled systems, network
models would predict no strain recovery for unentangled
chains. Examination of pair and bond energies shows
that they are nearly constant during the relaxation at T
=0.4u0 /kB. These results imply that entropic stresses drive
the relaxation and that entanglements play an important role.

To monitor the entropy in chain confirmations we
evaluated the orientational order parameter, P2�cos����
= �3 cos2���−1� /2, where cos2���= �Rz

2 / �Ree
2 . This quantity

measures the deviation from isotropy at the end-end scale.
There is significant orientation of both short and long chains
during the initial strain, which is discussed further below.
During the relaxation to zero stress and heating to T
=0.4u0 /kB the orientation relaxes only 3% for entangled
chains and 5% for unentangled chains. As shown in Fig.
6�b�, rapid and substantial deorientation occurs during the
strain relaxation above Tg. Short chains become nearly iso-
tropic after only �2�104�LJ, and there is little strain recov-
ery after this point. Entangled chains deorient more slowly,
and both P2 and �z are continuing to evolve slowly at the end
of the simulations. These results clearly show that the en-
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FIG. 6. �Color online� Time dependent relaxation at T
=0.4u0 /kB of �a� true strain and �b� chain orientation parameter P2

for entangled N=350 �solid lines� and unentangled N=16 �dashed
lines� systems. Systems were prepared by loading uniaxially to �z

=1.5 at T=0.2u0 /kB, unloading to zero stress, and then heating to
0.4u0 /kB over 100�LJ.
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tropy of chain orientation drives the strain relaxation. They
also show that the network of entangled chains prevents
chains from deorienting without recovery of the macroscopic
strain.

While Fig. 6 provides strong support for an entropic back
stress, the magnitude of this stress can only be of order
�ekBTg and thus much smaller than the stresses associated
with strain hardening. To confirm this we took the N=350
sample studied in Fig. 6 and heated to T=0.4u0 /kB with dif-
ferent stress control. Instead of fixing all �i to zero, only the
total pressure p=−��x+�y +�z� /3 was kept at zero while the
ratios of the Li were fixed at the values after deformation.
After heating, there was a shear stress �z−�x��z−�y whose
direction favored relaxation back to �=0. The magnitude of
this stress relaxed rapidly ��104�LJ� to about twice the en-
tropic estimate of �ekBTg�0.02u0 /a3, while the stress during
strain hardening below Tg is more than two orders of mag-
nitude larger. Similar results were obtained at higher tem-
peratures. We next applied a shear force of the same magni-
tude �0.04u0 /a3� to an unstrained system at T=0.4u0 /kB. The
magnitude of the strain produced by this stress over 105�LJ
was 1.2, which is comparable to that during stress relaxation
�Fig. 6�. Both this driven response and the stress relaxation
varied approximately as the logarithm of time, indicating that
the sample displays creep rather than viscous flow. Recent
studies of a similar glassy system also show creep behavior
at this temperature and time scale �60�.

D. Chain length effects

The orientation of unentangled chains shown in Fig. 6�b�
is not expected from entropic network models. For N�Ne
there is no entanglement network spanning the system. Net-
work models assume that this network is essential in forcing
the deformation of individual chains to follow the macro-
scopic strain. However, because chains are not free to relax
in the glassy state, chain orientation can occur even without
entanglements. In recent work on uniaxial compression, we
found significant strain hardening of unentangled chains �8�
and discovered a direct connection to chain orientation �17�
as suggested by recent analytic studies �29�. In this section
we extend the study of chain length dependence to other
strain states and systems.

Figure 7�a� shows stress-strain curves for flexible chains
�Ne=71� in plane strain compression for a range of N be-
tween 12 and 500. At small �g�, the stresses are nearly inde-
pendent of N. Beyond yield, the stresses increase faster for
larger N, reaching an asymptotic limit for NNe as expected
from network models �8�. However, there is significant strain
hardening for chains as short as Ne /6. Similar behavior is
observed for all entanglement densities under both uniaxial
and plane strain. This is illustrated for kbend=2.0u0 �Ne=22�
under uniaxial strain in Fig. 10�a� and for kbend=0.75u0 in
Fig. 2�c� of Ref. �17�.

Examination of individual chain conformations shows
that strain hardening is directly correlated with increasing
chain orientation �61�. To quantify this we define a micro-
scopic stretch of chains as �i

c�Ri /Ri
0 where Ri is the rms

projection along i of the end-end distance and Ri
0 is the value

before deformation. Figure 7 shows �i
c for flexible chains

under plane strain compression. For fully entangled chains
�N /Ne�7� the microscopic stretch remains close to the mac-
roscopic stretch as already concluded from Fig. 5. For �x the
deviation is smaller than the linewidth. For �z the maximum
deviations of about 2% �lowest dashed line in Fig. 7�c�� can
be attributed to nonaffine deformation of the unentangled
ends of the chains.

As the chain length decreases, the microscopic stretch
shows increasing deviations from the macroscopic stretch.
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FIG. 7. �Color online� Dependence of �a� stress and �b�, �c�
microscopic chain orientation on �g� for flexible chains under plane
strain compression at T=0.2u0 /kB with �̇=−10−5 /�LJ. �d� Ratio of
changes in chain volume to macroscopic volume. The chains have
lengths N=500 �solid lines�, N=107 �dotted lines�, N=36 �dash-
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lines�. The lower dashed line in �c� shows the macroscopic stretch
�z.

STRAIN HARDENING OF POLYMER GLASSES:… PHYSICAL REVIEW E 77, 031801 �2008�

031801-9



Chains compress by less than the imposed strain along the z
axis, and stretch by a smaller amount along the x axis. For
each N, �i

c is close to the entangled results at small �g� and
then saturates at large �g�. The onset of saturation in �i

c cor-
relates with the saturation of the stress, and moves to larger
�g� with increasing N. These results clearly show that en-
tanglements force the chain orientation to follow the macro-
scopic stretch but that significant chain orientation occurs
without entanglements. Strain also orients chains in unen-
tangled melts, but is only appreciable when the strain rate is
faster than chain relaxation times �62�. The extremely slow
dynamics in glasses prevents relaxation of shear-induced ori-
entation.

Figure 7�d� shows the ratio of the product of the chain and
macroscopic stretches �i�i

c /�i�i. This corresponds to the ra-
tio of changes in the volume subtended by the chains to
changes in the macroscopic volume. For entangled chains the
ratio is close to unity, as expected for a crosslinked network.
The volume subtended by unentangled chains need not fol-
low the macroscopic volume, but the observed deviations are
less than 11% in Fig. 7�d�. Deviations are even smaller for
flexible chains under uniaxial strain.

Figure 8 shows that �z is determined directly by the mi-
croscopic orientation of chains rather than the macroscopic
deformation. Results for plane strain compression of flexible
chains �from Fig. 7�a�� and uniaxial compression of semi-
flexible chains �Ne=39� are plotted against an effective g
calculated from �i

c: geff���z
c�2− ��x

c�2. When plotted against

this measure of microscopic chain orientation, results for all
chain lengths collapse onto a universal curve. A similar col-
lapse was obtained in Ref. �17� using a single effective ori-
entation parameter �z

eff along the compression direction. This
was obtained by measuring �x

c and using the assumption of
constant chain volume to determine �z

eff �i.e., �z
eff=1 /�x

c for
plane strain�. The collapse produced for g��z

eff� is nearly
identical to that in Fig. 8 because chain volume is nearly
constant �Fig. 7�d�� and geff is mainly determined by �x.

Figure 9 shows that results for �z−�y during plane-strain
compression also depend only on microscopic chain orienta-
tion. When plotted against the macroscopic �g�, results for
unentangled chains lie substantially below those for en-
tangled chains. When plotted instead against the microscopic
orientation function geff= ��z

c�2− ��y
c�2, data for all chains col-

lapse onto a universal curve �Fig. 9�b��. Note that �y
c de-

creases by as much as 5% from �y =1 for the shortest chains,
and this affects the data collapse �63�.

The quality of the collapse of the total stress decreases
slightly as the entanglement length decreases. This is illus-
trated for Ne=22 �kbend=2.0� in Fig. 10. Results for fully
entangled systems �N�4Ne� collapse completely. Data for
smaller N follow the asymptotic curve at small �geff�, and
then drop below it at a �geff� that decreases with decreasing N.
The smallest chains in Figs. 10 and 8�b� are only a few
persistence lengths and may not behave like Gaussian chains
�17�. However, such effects are not large enough to explain
why results for short chains fall below the asymptotic curve
in Fig. 10�b�.

These discrepancies are instead explained by examining
the variation with N of the energetic contribution to the
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stress. Figure 10�c� shows �z
U plotted against g��eff�. The

initial peak at low �geff� is nearly independent of N, but the
behavior at large �geff� is not. There is a sharp rise in �z

U for
fully entangled chains, that does not occur for N�44. The
magnitude of this rise is comparable to the deviation between
results for N=44 and the asymptotic curve for entangled
chains in Fig. 10�a�. These results suggest that while the
thermal contribution to the stress depends only on the chain
orientation, the energetic contribution at large �g� only occurs
for entangled chains. Without the entanglement network,
chains can contract along their tube to eliminate the large
energetic stresses.

We have confirmed that increasing the strain rate from
��̇ � =10−5 /�LJ to 10−3 /�LJ does not change the relation be-
tween chain orientation and stress described in this section.
The main effect is to increase �eff towards � with the in-
crease being more pronounced for shorter chains. At even

higher strain rates, there is almost no relaxation, and �eff is
close to � for all N. This is the regime observed in recent
simulations �25,26� with atomistic potentials, whose greater
complexity requires higher strain rates.

E. Dissipative stresses and plasticity

The large value of the hardening modulus and the multi-
plicative relation between it and flow stress, suggest that
strain hardening is related to dissipation by plastic rearrange-
ments rather than stored entropy. To quantify the rate of plas-
tic deformation RP, we examine changes in the Lennard-
Jones bonds between monomers over small strain intervals

�=0.005. At the start of the interval, all bonds shorter than
rc=1.5� are identified. Then the fraction 
f of these bonds
whose length changes by more than 20% during the interval
is evaluated. This threshold is large enough to exclude
changes due to elastic deformations. Tests also show that the
value of 
�=0.005 is small enough that a given atom is un-
likely to undergo multiple, independent bond rearrangements
in any interval. To eliminate activated rearrangements asso-
ciated with equilibrium aging, the rate of plasticity during
deformation was monitored at T=0.

Figure 11�a� shows the rate of plasticity RP�
f /
� as a
function of �g� during uniaxial compression of fully en-
tangled �N=350� and short �N=4� chains with kbend=0.75.
The two chain lengths lead to very different curves, but for
both cases RP is directly proportional to the dissipative com-
ponent of the stress. To illustrate this we also plot �z

Q /�*

where �* is the constant of proportionality relating RP and
�z

Q. Note that even the rapid fluctuations with �g� in the two
quantities are correlated. These fluctuations are greatly re-
duced in the total stress, which can not be made to correlate
as well with RP. The N=4 chains exhibit nearly perfect-
plastic behavior for �g � �1, showing that the correlation is
not directly related to strain hardening. The fact that �* is
nearly the same for short chains that flow at a constant �flow
and entangled chains that show significant strain hardening
at larger strains is clear evidence for the close connection
between the flow stress and strain hardening.
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FIG. 10. �Color online� �a� Stress as a function of g during
uniaxial compression of kbend=2.0u0 chains with N=350 �dotted�,
88 �solid�, 44 �dash-dot-dotted�, 22 �dash-dotted�, and 11 �dashed�
at T=0.2u0 /kB and �̇=−10−5 /�LJ. �b� Stress replotted against geff.
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compression of kbend=0.75u0 chains with N=350 �upper curves�
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In Ref. �17� we showed that RP and �z were also corre-
lated for uniaxial compression of chains with kbend=0 and
1.5u0. Figure 12 shows that this connection extends to plane-
strain compression. In all cases studied, RP tracks both the
mean �z

Q and local fluctuations. Moreover, the normalization
constants have nearly the same value within our numerical
uncertainties. Best fits for all N, kbend, and strain states range
between 0.98 and 1.1u0 /a3. Since RP is the rate of rearrange-
ments per LJ bond, �* should correspond to the density of LJ
bonds, �LJ, times the energy dissipated per bond. Each atom
has on average about 13 LJ neighbors and each bond is
shared by two atoms, so �LJ�6.5�. Thus the energy dissi-
pated per bond �* /�LJ is about a quarter of the binding en-
ergy �0.68u0�. Note that this value would change slightly
with the threshold used to define a bond rearrangement and
other factors in the definition of RP, but the result that �* is
similar for all systems with the same rc is more robust. In-
creasing rc increases the binding energy and also �*.

The same �* are obtained when the strain rate is reduced
to 10−5 /�LJ, but the magnitude of the fluctuations increases
slightly. Different behavior appears when the strain rate is
increased to 10−3 /�LJ. Fluctuations are much smaller since
there is insufficient time for stress equilibration. There is also
a decrease in RP, while �z

Q increases. This implies that there
are fewer plastic rearrangements involving larger dissipation,
presumably because the system does not have time to mini-
mize the energy.

IV. SUMMARY AND CONCLUSIONS

Extensive simulations of strain hardening were performed
for polymer glasses with a wide range of entanglement den-
sities, chain lengths and temperatures. As in experiments, we
find that the calculated stress-strain curves of entangled
chains can be fit to expressions derived from entropic net-
work models �Eq. �6��. These models normally treat the flow
stress as an independent parameter that is determined by en-
tirely separate mechanisms. However, our simulations �8�
and experiments �47� show that �flow and GR are correlated,

and that both drop linearly to zero as T rises to Tg. This
suggests that �flow enters multiplicatively rather than addi-
tively, and motivated a simple modification of the eight-
chain model that describes the full temperature dependence
of stress-strain curves. While this model may prove useful
for extrapolating experimental data at one temperature to all
others, the fit parameters do not appear to have physical sig-
nificance. For example, values of Ne are different for uniaxial
and plane strain deformation. Another difficulty is that the
model implies a relation between the two nonzero stress
components in plane strain compression that is not satisfied
by the data. We are not aware of experimental studies of the
transverse stress �y, but it would be interesting to see if the
same inconsistency could be observed experimentally.

Separate study of the energetic and thermal components
of the stress provided insight into the failures of network
models. The thermal component of the stress �Q scales
nearly linearly with �g� for all systems. Even when h is as
large as 0.5, the Langevin contribution to strain hardening
�Eq. �6�� is not evident in �Q. Instead the rapid rise in � at
large �g� is associated with an increase in the energetic com-
ponent of stress. This rise is the dominant factor in fits of Ne
to the eight-chain model. Since the energetic contributions
scale in different ways for uniaxial and plane strain, fit val-
ues of Ne are different for the two strain states. Existing
experiments have not examined energetic and thermal com-
ponents of the stress separately in the strain hardening re-
gime under isothermal conditions, but in principle deforma-
tion calorimetry experiments could do so. Our results suggest
that a study of trends with entanglement density would be
particularly useful.

Analysis of chain conformations reveals the origin of the
energetic stress. As strain increases, chains are pulled taut
over longer segments. When the length of straight segments
reaches Ne, entanglements limit further straightening. Addi-
tional strain leads to a rapid increase in the tension in cova-
lent bonds and the energetic component of stress. Straighten-
ing on a scale of order Ne corresponds to large h. Thus even
though different strain states lead to different fit values of Ne
in the eight-chain model, both fit values tend to follow trends
in the true Ne. Modern microscopic theories of rubber elas-
ticity �64� incorporate intra- and interchain energetic effects
due to chain stretching and orientation, respectively. Analytic
studies based on this approach �65� may be able to capture
the changes in stress and chain conformation observed in our
simulations.

Our simulations reproduce the shape recovery observed in
experiments when strongly deformed, well-entangled glasses
are unloaded and heated slightly above Tg �28�. This relax-
ation is often invoked as evidence for the entropic stresses
predicted by network models. As expected from this picture
we find a strong correlation between relaxation of strain and
the decay of strain-induced orientational order. However, we
show that the stress associated with shape recovery is only of
order �ekBT and thus much too small to account for strain
hardening. This stress was determined by measuring the
shear stress in deformed samples after rapid heating, and by
identifying the shear stress needed to strain an undeformed
sample at the rate observed in shape recovery. The latter
method could also be applied in experiments.
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FIG. 12. �Color online� Rate of plasticity �solid lines� and dis-
sipative stress �dashed lines� for plane strain compression of
flexible �kbend=0� N=500 chains �lower curves� and semiflexible
�kbend=1.5u0� N=350 chains �upper curves�. Here T=0, �̇=
−10−4 /�LJ, and �*=1.05u0 /a3 for kbend=1.5u0 and 0.98u0 /a3 for
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Limited orientation and shape recovery were observed for
unentangled chains even though entropic models assume that
there is no network to impose chain orientation in such sys-
tems. Significant strain hardening was also found for these
unentangled chains. The stress and orientation follow results
for highly entangled chains at small �g� and saturate at large
�g�. The onset of saturation moves to larger �g� as N increases.
As suggested by recent theoretical work �29� and observed in
our recent simulations �17�, the stress is directly related to
effective stretches describing the microscopic chain orienta-
tion �i

c rather than the macroscopic stretches �i. Plots of

stress against g��̄c� collapse data for unentangled and highly
entangled chains onto a single curve. Small deviations from
this collapse are observed when the energetic contribution to
the stress is large, i.e., when Ne is small and strain is large.

For both entangled and unentangled chains the thermal
contribution to the stress is directly proportional to the rate
of bond rearrangements. Both the gradual trends and rapid
fluctuations in the two quantities track each other. The pro-
portionality constant is nearly independent of Ne and chain
length. The latter result helps to explain the connection be-
tween �flow and GR, since short chains shear at a constant
stress near �flow. There has been great interest recently in
plasticity in model atomic glasses �66–68�. It would be in-

teresting to check whether the direct correlation between dis-
sipative stress and bond breaking and reformation holds in
such systems �69�.

One of the intriguing questions raised by our results is
why the thermal contribution to the stress always rises nearly
linearly with �g�. The stress has the functional form expected
for the entropy of Gaussian chains even in the limit T→0
where entropic contributions to the stress must vanish. One
possibility is that entropy enters indirectly. As �g� increases,
the number of conformations available to the chains is re-
duced. The growing constraint on conformations may natu-
rally lead to an increase in the number of local bond rear-
rangements that scales with entropy. This would explain the
linear increase in the rate of plasticity with �g�, and the cor-
responding increase in �Q.
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