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Fcc-bcc transition for Yukawa interactions determined by applied strain deformation
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Calculations of the work required to transform between bcc and fcc phases yield a high-precision bcc-fcc
transition line for monodisperse point Yukavstreened-Coulomisystems. Our results agree qualitatively but
not quantitatively with recently published simulations and phenomenological criteria for the bcc-fcc transition.
In particular, the bce-fee-fluid triple point lies at a higher inverse screening length than previously reported.
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I. INTRODUCTION The role of anharmonicity in stabilizing the fcc phase is

The screened-Coulomb or Yukawa pair potentiér) analyzed in detail. While anharmonicity increases '.[he energy
=®e/r has been the focus of great theoretical interest fof the fcc phase relative to that of the bcc, there is an even
two reasons. One is that it describes a wide range of interadarger increase in the relative entropic cqntrlbutlon to the free
tions, changing continuously from a pure Coulomb potentia€nergy that increases the range of stability of the fcc phase.
to an effective hard-sphere potential as the inverse screeninghlis appears to reflect an increase in the frequency of the
length « increases. The second is that it provides an approxilong wavelength shear modes that dominate the bcc entropy
mate description of the effective interactions between largén the harmonic approximatiof21].
ions that are screened by more mobile counterions. In this Our results are also compared to phenomenological crite-
context it has been used to describe the interactions betweeia proposed by Vaulinat al. [10]. These authors predict a
ions surrounded by electrons in met@lg, dust grains sur- transition at a critical value of the mean-squared displace-
rounded by electrons in dusty plasni@s-4], and macroions ment about lattice sites, and calculate the displacement using
surrounded by counterions in charge-stabilized colloidal susa simple Einstein-like model. We find that the actual dis-
pensiong4-8§]. placement from molecular dynami¢®ID) simulations on

The phase diagram of systems of particles interacting witlbur transition line is in reasonable agreement with their phe-
a Yukawa potential has been studied with both analytimomenological criterion, but substantially larger than pre-
[9-14 and numerica[14-24 techniques and compared to dicted by their Einstein model.
experiments on dusty plasm§25,26 and colloidal suspen-  The details of our calculations are presented in the follow-
sions[27-29. The high-temperature phase is a fluid. There ising section. Sec. Ill provides a detailed analysis of system-
no liquid-gas transition because the interactions are purelyitic errors and presents our results for the phase boundary. In
repulsive. The stable crystalline phase at zero temperaturSec. |V, we compare our results to previous transition lines,
changes from bcc to fcc asincreases. The higher entropy and Sec. V provides a summary and conclusions.
of the bcc phase leads to a greater range of stability as tem-

perature increases until the melting line is reached. Previous

results for the fcc-bec transition lingl1,20-24 vary sub- II. METHOD

stantially and the most recent detailed calculaf{i®8] quotes _ )

an uncertainty of about 10% roughly halfway between the A. Free energy difference calculations
zero-temperature transition point and the triple point. Constant numberN, volume V, and temperatureT

In this paper we use a different approach to obtain thgN-V-T) ensembles are most natural for the study of Yukawa
bce-fec phase boundary with an uncertainty of only aboukystems for two reasons. First, since the Yukawa potential is
1%. Bounds on the free energy difference between the twgurely repulsive, the macroions in an experiment will expand
phases are obtained by calculating the work done during & fill the container. Second, the inverse screening lergth
continuous deformation between them. The effect of deforgensity dependent in charged colloidal suspensions and dusty
mation rate, truncation of the potential, and system size anglasmas[30]. This density dependence is system specific,
geometry are all analyzed to determine systematic errorgnd affects the pressures and bulk moduli. Thus any calcula-
The resulting bce-fee transition line is in qualitative agree-tion of coexistence regions will be nonuniversal. For this
ment with recent simulation results, and quantitative diﬁer-reason we focus on f|nd|ng the Helmholtz free energy differ-
ences are comparable to the larger error bars quoted by prence AF=F;..—F,.. at fixed volume. Brief discussions of
vious studies. We estimate the location of the bcc-fee-fluidcoexistence are given in Secs. 11 B and 11l D
triple point using previously published melting-line results  postma, Reinhardt, and oth€31-33 have shown that
[17,23, and find that it lies at higher inverse screeningthe free energy difference between two phases of a system
lengths than previously reported. may be calculated in numerical simulations by evaluating the

external work done on the system along a thermodynamic
path connecting the phases. From elementary thermodynam-
*Electronic address: robhoy@pha.jhu.edu ics, the mechanical workV,g done on a system on an iso-
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length scale im=n"'3, wheren=N/V is the macroion num-
ber density. The Yukawa potential may then be expressed as

1)) e—)\r/a

u(n = ; r/a

, 3

where\=«ka is the dimensionless screening parameter. The
limits A— 0 and\ — « correspond to the exhaustively stud-
ied one-component plasma and hard-sphere systems.

A natural time scale is provided by, the period of an
Einstein oscillator in a crystal. The Einstein periods for the
fcc and becce phases change by an order of magnitude over the
range of \ studied here(3=\=<8), yet differ from each
other by less than 1.2% at any giverwithin this range. To
obtain consistent results across a wide range of screening
lengths, we normalize all time scales in this studyrto\),

FIG. 1. The Bain transformation. Two cells of a bcc lattice areusing the fcc values given in Rgi21].
shown with lattice directions. The body-center atoms are shown in A natural energy scale is given by the Einstein phonon
black. When the x, y, and z directions are scaled by energiesmwéaz, where m is the macroion mass amug

(2716,271/%,219), the crystal is transformed into an fcc lattice of the =27/ 7 is the Einstein frequency. Following Kremet al.
same density. The atoms connected by the dotted lines become twyo(], we define the dimensionless temperature
(100 faces of an fcc unit cell.

=~ keT
T=—2

thermal path from stata to stateB gives an upper bound on mwréa2

the changeAF,zg=Fg—F, in the system’s Helmholtz free

energy[34]. The workWg, done on the system during the ~ _ : )

reverse procesB— A is an upper bound oAFg,, and hence (A.T) space. A dimensionless inverse temperature

(Wi, is a lower bound Om\F . =(d/a)/kgT called the coupling parameter is used in many
Bounds onAF for Yukawa systems can be obtained usingstudies of dusty plasmas. The advantage of uJingther

a continuous constant-volume Bain deformation g&ig. 1)  thanTI" in Yukawa phase diagrams is that the transition lines

connecting the bcc and fcc lattices. An initially bcce lattice are approximately linear in.

deformed such that its three cubic symmetry directions are The bcc and fcc phases coexist in equilibrium over a part

scaled, respectively, by 72,772 7) is transformed into  of the phase diagram. Following previous authf#6—23,

an fcc lattice of the same density gsvaries continuously e define the bce-fec transition line as the culfygn,g\) on

from 1 to 2/3 [35]. We calculate the work done along this _, . =~ . L . .
path in the f([)rv?ard and reverse directions using gstrainyvh'ChAF:AFO"T):0' This transition line will certainly lie
controlled molecular dynamics simulatiof@s] within the coexistence region, regardless of the thermody-

Assuming that the systems traverse these paths homoggamic state dependence efand ®. We find Tiang(A) by
neously, we can calculate the work done from the globatalculatingAF at many pointg\;, T;) on the phase diagram.
stresses and strains. We define

(4)

using the fcc phonon energies, and plot our phase diagram in

C. MD simulation details

fcc
Wi = Vf o -de, (1) We simulateN-V-T ensembles of identical particles using
bee a velocity-Verlet[37] algorithm to integrate the particle tra-
jectories. The temperature is maintained with a Langevin
[ thermostat[38]. Periodic boundary conditions are used to
Wip =V fee o de, 2 maintain the density. The equations of motion for the posi-

L tion G, and peculiar momentum, of theith particle are
whereo ande are the stress and true strain tensbg; and

(=W;,) are upper and lower bounds aifr. For these bounds iji =p,/m +?ﬁi, (5)
to be narrow, the intermediate configurations of our systems
must remain statistically representative of ependent Lo L

y Tep thelep Pi =Fi—€pi + 7 = Pi / TLang: (6)

equilibrium distributions ag is varied[31]. In particular, the
stress tensow({) must remain near its equilibrium value.  \yhere'eis the true strain-rate tensd is the force due to
Yukawa interactionsy; is a random noise term, angyn, is
the characteristic relaxation time of the thermostat. We use a
time stepét=0.017c to ensure proper integration of Eqs.
The phase behavior of Yukawa systems is most convet5) and(6) and setr| 4nq=107. Changingét and 7 4,4 by a
niently expressed in terms of dimensionless screening anfctor of 2 in either direction had no effect on the phase
temperature parameters. One natural, phase-independatiagram.

B. Potential parameters
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For numerical efficiency we truncate interactions at a cut- 3
off radius r.. Due to the presence of long range order in
Yukawa crystals, care must be taken in choosing this cutoff

radius. We present the details of our determination.@X) in 1
S
Sec. lll B. Z
In most of our simulations, we impose the bedcc Bain S 0
transformation as follows. We start with a lattice of 3456 =

particles(12% bce unit cellg in a cubic simulation cell with
edges of length.,=L,=L,=L, aligned with the(100 direc- 2
tions of the lattice. The system is equilibrated for 200 Ein-
stein periods. We then fi&=L,/L for a time At sufficient to

reach the fcc struc_:ture!\'t:(Zl_B— _1)5 ~%. The other cell edges FIG. 2. Simulation results fok=5,/=10"%/ 7. Solid triangles
Lx andL, are varied to maintain constant volume and tet-are values of\,y, solid squares are values bf, The dashed and
ragonality (L,=L,= \«"Lgl L,). The true strain-rate tenseris  solid lines are linear fits to the resulf&, and Ty, are the intersec-

-3

then given by tions of these lines wittW=0.
&=L, = ¢, (7). the intrinsic viscosity and the drag forceg;#r g ON the
particles applied by the Langevin thermostat. The viscous
€= €y = LX/LX: - '§/2§, (8) dissipation rate is given bﬁisc-?{ so one expects the dissi-
pated power to be proportional 8. Since the total simula-
'exyz €= gyzz 0. (9) tion time scales ag™?, the total dissipated energy, and hence

the deviation oW, from zero, should be linearly pro-

portional toZ. We present thrz'f,r dependence of our results in
Sec. Il A.

We compute the diagonal elementB,,P,,P, of the
pressure tensor using standard meth{##. Equation(1)
then takes on the more physically familiar form

At . . .
Whi == J (PyLyL L+ PyLL Ly +P,LLL)dt (10) lll. RESULTS
0 A. Strain-rate dependence

After the system has reached the fcc structure, the deforma- At temperatures near the transition line, calculations of

tion process is reversed by changing the signf.ofs the the geometrical structure factor and pair correlation function
system returns to bcél;, is calculated using the analog of verify that our systems traverse the Bain transformations ho-
Eq. (10). mogeneously. This homogeneity allows us to use Efjs.

To minimize uncertainties iﬁ-trans()\) g must be small andA(Z) for calculatingW,s andWj, and leads to tight bounds
' on AF.

nough for th m to remain near ilibrium. One re- . - -
enough for the system to remain near equ brium. One re We obtained results similar to those shown in Fig. 2 over

quirement is that the strain-rate compone(t) of the ve-  {he entire investigated range pfand for three different val-

Ioc_ltles must be s_mall_ compare_d to. the thermal velocity. The . {. Near the transition lineWy(\,T) and Wp(\,T)
Bain transformation time\t (which is proportional ta/ ™%

must also be large compared g, to allow the thermostat vary linearly withT and have ngarly oppos(&-degendent
to transfer heat to or away from the system as necessary &ioPes. The scatter about linear fits (), T) and
maintain constant temperature. Singg,y sets the time over W,(\,T) is consistent with fluctuations iV, and W, at

which the'system ;amples the canonical' ensemble, the thefyeq ()\’Tr)_ The intersections of these fits with=0 give

modynamic sampling improves @g/ 7 5,4 increases. . ~ =~ =~ .
The precision of the calculated transition line depends orliW? estimates, Ty and Ty, for I”a“_‘s' _These are obtained

the difference (AF ax— AFmin) = Wy Wi =Weyce between — USING .data_ at ten evenly spac&dwithin about 5% of the

the bounds on\F. These bounds converge to each other intransition line. 5 _

the reversible thermodynamizero strain-ratglimit. In this For a given systenily, and T,; provide upper and lower

limit, the average workWeyci9 done on the system over a pounds onT,,, Since Wy > AF >-W;, and (JAF/4T)>0.

full deformation cycletbcc— fec— bec or vice verspshould — we define the fractional uncertainty due to dissipative hys-
vanish. In simulations at finite strain rate, however, there is agresis as

positive systematic error iV, due to energy dissipation o

[40]. This can be physically interpreted as arising from vis- Shyst= (Ti = Top) (Tt + Toy) - (12)
cosity. Each applied strain increment takes the system - ) . '

slightly out of equilibrium. Whert is small, one expects the 1€ conditionss, s~ £ and(Weyi9 ~ £ are equivalent due to
stresses to deviate from their equilibrium values by arthe linear dependence W¥,; and W, on T. Figure 3 shows

amounto,isc~ £ [41]. Sources of viscous dissipation include the ¢ dependence of, for A\=4 and\=5. The results are
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FIG. 3. (Color onling Strain-rate dependence @y Solid FIG. 4. Determination of for A=3. The heavy curve is our

circles indicatex=4 results. Empty squares indicate=5 results.  estimate of E(r,) obtained from simulations af=8.84x 1072,
The solid and dashed lines are linear fits to the data. The error baxgith r;=10a. The dashed line is the analytic upper boundséir ;)
indicate statistical uncertainties. from Eq.(14) with Q=1/3. Thehorizontal line is the value dbE|

in Eq. (12) corresponding tdd.,]=0.01.
consistent with our hypothesis that the energy dissipated is
linear in ¢. The cutoff-induced error in the potential energy difference

. PP = = ; can be written in terms of the pair correlation functions
We identify Tyans=(Tpi+Tip)/2 as the best estimate for ;
the transition temperature for a given system size, systeanCC(r) andgped(r) of the fec and bee crystals. Fot particles
geometry, and potential cutoff radius. Table | shows that the .

. - = o N
fractional variation ofT4ns With £ is much smaller thai,, s SE(ro) = Ef U(N[Gtee(r) = Gpedr)14mr2dr/ad.  (13)
[42]. r

In the following, we present results fo¢|=1074/ .
Based on Table I, for this value ¢f| the random and finite T ¢ =Max|giec) =Goed1) |, r=rc}, then

strain-rate uncertainties if,,s are comparable, both about . ol
0.2%. The combined error is estimated to be less than 0.4%.|9E(ro)] - &f U(r)2mr2dr = 271 +refa)e™e
. CI)a2 n = .

c

The uncertainties given in subsequent tables include only N(®/a) ; A2
statistical uncertainties from the linear fits used to calculate

> o (14
Ty and Ty,

One expectg) to be of order 1 at finite temperature.

B. Potential cutoff dependence For A\=3,4, and 5, weestimateddE(r,) at T= Ty, by
galculating the pair correlation functions in large systems
using large cutoff radii and long integration times. Due to the
exponential falloff ofU(r) and finite temperature smoothing
of g(r), the infinite upper bound in E¢13) can be replaced
by a finite valuer, without introducing significant errors. We
~ ~ found Ar;=30a to be sufficiently large.

ST(re) — lﬁ_T(;E(r ). (12) Figure 4 shows our estimate [@fE(r.)/ (N®/a)| from Eq.

T TIAF T C (13) and the value of SE/(N®/a)| corresponding tod,
=0.01 forA=3, the longest-range potential considered. We
found that() decreases from 1.4 to 0.62 gsincreases from
3.5a to 6.5a. The actual error is always smaller than the
bound given by() becausa;..— gy 0Scillates in sign. The

- envelope shown corresponds f0=1/3. Because of the
TABLE |. Dependence ofTyang(h) on dimensionless strain  sharp variation ofSE(r;), we use this envelope to estimate

We estimate the errors introduced by truncating the forc
at r. by calculating the errobE(r.) in the potential energy
difference. If the error imlAF is of the same order, then the
fractional error in the transition temperature is

5cut =

Here (fl’/aAF) is known near the transition line from the
work calculations.

rate. 1)
cut -
. ~ ~ ~ _ To test Eq(12) we calculatedr,,s as a function of . for
(e 10°Tyrans (A =4) 10°Tisans (A=5) N=3. Results are shown in Table Il. The fractional changes
5x 107 1.637+0.003 2.363+0.002 iN Tyans from re,=3.52to r,=6.667 and fromr.=4.667 to
1x10°% 1.634+0.004 2.365+0.004 r.=6.664aare 19% and 0.9%, respectively. Both changes are
2% 1074 1.633+0.005 2 366+0.005 about one fifth of the estimates fa@,; from Egs.(12) and

(13). No statistically significant changes are expected or ob-
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TABLE II. Tyans VS Ic for A=3. |8 is given by Eq.(12) and TABLE IV. Dependence offy,ns ON System geometry.
the bound in Eq(14).
= A 10%T ans (N=3456 10%Trans (N=4000
r S 10°T,
‘ e rans 4 1.634+0.004 1.625£0.004
3.5 1.04 1.048+0.003 7 3.592+0.004 3.570+0.004
4.667 0.041 0.871+0.002
5.83& 0.0015 0.880+£0.002 5
6.667 0.00014 0.879+0.003 edges. As shown in Table 1V, the valuesTgf,,s obtained for

both A\=4 andA=7 were 0.6% lower than those obtained
with the standard system geomefd4]. Other simulations
served forr.=5.833. We conclude that errors estimated verified that this was due solely to the change in boundary
from the envelopes of curves like Fig. 4 give a conservativeconditions. We conclude that our dominant source of uncer-
estimate of cutoff errors. tainty is finite size and is less than 1%.

To ensure that the fractional systematic errors were no We attribute the observed sensitivity to geometry to the
larger than our random and rate errors, we chsdightly  change in allowed low-frequency modes. These modes play
above the values corresponding|8,/=0.002. Forn=3,4,  a disproportionate role in determining the entropy in lattice
and 5, we used cutoff radii of 5.8834.37%, and 3.&inthe  dynamics calculationpt5] and drive the fce-bcc transition
simulations used to determifig.,, Smallerr, can be used With increasing temperatuf@1]. Since the shear velocity is
at higher A both because the interactions weaken andhighly anisotropic in the bce phase, changing the boundaries
Ttrans/TmeIt increases, leading to a smallér For \=5 we affects the sampling of these low-frequency modes and thus

fixed the cutoff radius at.=3.5a. AF.

C. System size and geometry dependence D. Transition line

To examine finite-size effects we also considered a 432- Table V shows our calculateB,,,s{\) with statistical un-
particle systeminitial state & bcc unit cell3. Because the certainties. As described above, the combined systematic er-
corresponding fcc state has transverse lengtha6 A& mini-  rors due to finite strain rate, system size, and potential cutoff
mum image convention requireg<3.3674, and we used are estimated to be less than 1%. Results of a cubic polyno-
r.=3.3a. To separate out, dependence from system size mial fit to the data are also given:
dependence, we also recalculated the transition lineNfor

=3456 for 5=\ =8 with r=3.3. N 10T N) = 6.466 78\ — \o) +0.430 01\ — \o)?
Table Il shows a comparison of our calculated transition
temperatures. ThAl=432 values were systematically lower, ~0.068 06\ — \o)°, (15

but the effect was small. From theoretical considerations one

expects the leading finite size corrections A6/N to be  Where \,=1.718 is thezero-temperature transition point
proportional to 1N [43]. This should produce a correspond- obtained from lattice statics calculatiorjg6]. Lower-
ing error mTtrans- As shown in Table 1l the changesTrt}anS order polynomials fail to adequately fit the data within our

from N=432 toN=3456 were all about 1%. The changes in uncertainties.

~ B ~ i Figure 5 shows the polynomial fit and two previously
Tirans from N=3456 toN=2 for this system geometry should , pjished solid-fluid coexistence lings7,23. The intersec-
be about eight times smaller.

Another. test indicates that finit foct | tions of these lines give estimated values of the bcc-fee-fluid
nother test indicates that finite-size effects are arge'irple point. Using results from Ref[17] we find (A
than the above estimate. The geometry was changed so tha

the fcc state has equal cell edges and the bcc staté has = /42 Ttp 0.00384. Those from Ref.[23] yield (A,
=L,=\2L,. These simulations contained %fcc unit cells ~=7.84 Ttp 0.004 01.
(4000 particles with the (100 directions parallel to the

simulation cell edges. After Bain transformation, the bcc TABLE V. Calculated and fit values Of s Only statistical
state has twd@110) directions parallel to the simulation cell uncertainties are quoted.

TABLE IIl. Dependence off;zns on N. A 107 ans 105711t

~ ~ +
x T N4 10T N5 © 6342000 o
5 2.350+0.009 2.362+0.004 5 2.365+0.004 2.345
6 2.985+0.011 3.021+0.003 6 3.017+0.004 3.023
7 3.562+0.009 3.593+0.005 7 3.592+0.004 3.613
8 4.064+0.008 4.087+0.005 8 4.085+0.004 4.072
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0.004 F _ TABLE VI. Anharmonic free and total energy differences evalu-
fluid em= T ated atTiit
0.003 E . A 10PAF 5/ NKgT 10PAE,/NKgT
T 0002 E bec 3 -0.58+0.1 0.42+0.33
4 -1.07+0.12 1.0+£0.4
5 -1.92+0.15 1.2+0.4
0.001 & fec 6 -3.03£0.17 2.4+0.4
I 7 -4.33+0.21 2.2+0.4
0 [ 1 1 1 1l 1 1
1 2 3 4 3 6 7 8
A tions, while the values oAE,, were found from separate

equilibrium simulations. The anharmonic corrections to the

FIG. 5. Phase diagram of Yukawa systems. The heavy line is ouf i, energy favor the bcc phase for alli.e., E;c—Epcc ON
cubic polynomial fit for the bcc-fce transition line. The light solid - . : ! )
the transition line has increased relative to its zero-

line is the fcc-bee transition line from Ref23]. The lower and . P
. . ) ) . temperature value. The anharmonic contributions to the free
higher dotted lines are, respectively, the lattice dynamics and mo-

lecular dynamics bcc-fee transition lines from R&21]. The tri- energy difference, however, are larger in magnitude and op-

angles are a bcc-fcc coexistence point and triple point from Rel‘.p.oSlte in sign, implying that anharmonic entropic contribu-
[22], and the solid square is a bcc-fce transition point from Ref.llONS t0 AF favor the fcc phase at alk and overwhelm

[24]. The dashed and dash-dotted lines are the melting lines frorfN€rgetic contributions.
Ref. [17,23. The empty squares denote our estimates for the bce- 1N lattice calculations the larger entropy of the bcc phase
fce-fluid triple point. comes mainly from the lower frequency of its shear modes.

Some of these modes have negative energy\or7.67,
causing the bcc phase to become linearly unstable at low

If we assume that the parametetsand ® are density S ) .
independent, we can calculate the width of the bcc-fcc Coext_emperature:[;21]. It is interesting that the onset of this low-

istence region from the pressures and bulk moduli of the twéemperature instability is clo_se Wy, However, we have
phases on the line whersF=0. The bce pressure is larger performed runs near the melting line foras large as 10 and

e the e pressure by only about 0.0d% o, and by 74 111 bee phase femains metasabe T mole e
0.65% forA=7. This results in a higher density in the fcc wavelen tlh shear mod\és ! roviding an ex I?';ltaatioﬁ for thg
phase at coexistence, but only by about 0.015%=a4 and 9 P 9 P

) ) ~ decreased entropy advantage of the bcc phase.
0.2% atA=7. The corresponding changes xnand T are
much smaller than the uncertainties in our calculated transi-
tion line. The coexistence region in experimental systems
may be much larger due to variations snand ® with den-
sity [26,29. As noted above, these variations are system spe-
cific and a more complete treatment is beyond the scope o(;
this paper.

IV. COMPARISON TO PREVIOUS RESULTS

Miller and Reinhardt were the first authors to use Bain
eformation paths to obtain bounds A for Yukawa sys-
tems [24]. They calculated the work by integrating the
change in the Hamiltonian rather than from the stresses and
strains. The large discrepancy between their7 transition
temperature and our result is likely due to their extremely
small system sizéN=108), which was just used to illustrate
their method.

The earliest MD calculationg0,2]] of the transition line
also deviate substantially from ours, particularly at laxge
The upper dotted line shown in Fig. 5 is a fit between points
L . Shere the fcc and bee phases were found to be stable. The
[21,23. This |_mpI|es that the anharmonic component of thegap between points was about 20% and the final shape was
free energy difference, strongly influenced by a bce-stable point above the melting

AF 4, = AE,, - TAS,,= AF - AF,p, (16)  line. Other points where the bcc phase was stable lie close to
is_ negative on the transition line. The relative signs and mag(-)uro-ﬁrrar{?abnustit?c:ﬁ ﬁzgt?g izpqtldjl;ﬁt;?i\}geazgael:ﬁgﬁlstevsi.th more
nitudes of AE,, and AS,, may be calculated by comparing yecent MD and Monte Carlo resulf22,23. Dupontet al.
our accurate measurements of free and total energy dlfferc'alculated a fcec-bee coexistence point and the fce-bec-fluid

ences with the lattice-dynamics results. : : ; .
. o triple point using small system@\=250). Although their
Table VI shows results for anharmonic contributions to e p 9 ~ Y N ) 9

the free and total energy differences on the fit transition lind"Ple point (\;=6.75.T;;=0.0034 lies well below ours
[47]. The values ofAF,, are known from the work calcula- (A\,=7.7+0.3.T;;=0.0039+0.000Land well below recently

E. Anharmonic effects

The lower dotted line in Fig. 5 shows lattice dynamics
results for the bce-fee transition lif@1]. In this approxima-
tion the energy and entropy differencés;, 5 andAS p, are
independent ofT. The fcc-bce transition line is given by

056103-6



FCC-BCC TRANSITION FOR YUKAWA INTERACTIONS.. PHYSICAL REVIEW E 69, 056103(2004)

0.004 F T TABLE VII. Rms displacements &/t (\). Ayans is the pre-
i - diction from Eq.(17), while A¢.. and Ay are results from equilib-
- . / . . .
0.003 £ . rium MD simulations.
.003 - “4.//
—~ [ Ry A Ayrans/@ Atec/a Aped/a
T 0002 | R
- e 3 0.0915 0.089 0.096
r o 4 0.1181 0.118 0.128
0.001 |- // 5 0.1341 0.140 0.154
[ 6 0.1447 0.159 0.177
oAy L ol L L 7 0.1522 0.171 0.192
2 3 4 5 6 7 8
A

_ o _ i the fcc structure lie quite close to the prediction for small
FIG. 6. Comparison of transition line to analytic estimates. Theand about 13% above it at=7. Finite size effects decrease
heavy line is ourTy,(\). The dashed and dotted lines are the A, _relative to theN=c value[45,48. These results indicate
analytic estimates for the beefcc and fcc— bec transitions from  that most of the error in the transition lines of Vauliegal.
Ref. [10]. comes from substantial underestimation of the rms displace-
ments. They calculata in the harmonic approximation, and
published melting line$17,23, it lies only about 2% below anharmonic corrections increa&dor thesex [21]. Note that
our fce-bece transition line. the measured bcc displacements in Table VII are larger due
Hamaguchi,et al. also obtain a lower triple point\, to the bcc lattice’s softer shear modeq].

=6.90 ,'~I'tp:0.0038 because their bce-fce transition tempera-
tures are systematicallyp—109%9 higher than our$23]. One
possible explanation is that their equilibration times were too

short. They used the\-independent time unitr=13w,", We calculated the bce-foc coexistence line of Yukawa sys-
wherew,=v4mn®/mis the plasma frequency. Starting with tems to an uncertainty of approximately 1% through integra-
perfect bce and fcc lattices as their initial conditions, theytion of the mechanical work along Bain transformation paths.
equilibrated their systems for a maximum of 38@efore  The range of bce stability was found to be slightly greater
beginning their free energy measurements. This correspondfan that found in previous comprehensive studizs-23,

to about 2% for A=3 and only 4¢ for A=8. Since the latter and the triple point shown to lie at higher inverse screening
is only about four times the velocity autocorrelation t'me’length. The large changes Tyaqs with ., for small\ indi-

and comparable to the time for sound to propagate aCrOS%te that the relative stability of fcc and bcc phases depends

thelr_S|muIat|on .C?”S' Itis QOubtfuI that their systems hadsensitively on long-range correlations, and calls into question
gqumbrated sufficiently at' h'g?" Too short an .equmbratlon the use of local nearest-neighbor arguments to calculate the
time could cause overestimation of the stability of the phas‘?ransition line. Nevertheless, we found that one such phe-
with lower entropy, the fcc phase, which is consistent Wlthnomenological criteriofj10], derived from the idea that the

the\i/r fi?dings.d I h d oh loai fcc phase is stable when interparticle interactions are hard-
aulina and coliéagues have proposed pnenomenoliogicy here-like[49], predicts the transition line remarkably well

L o ")
criteria for t.he bec-fec tran3|t|om0]. They assume that when combined with MD results for the mean-squared dis-
is an effective hard-sphere radius and predict that the ValuSlacement

of the rms displacement at the fcc transitians satisfies Comparison with lattice-dynamics results shows that an-
= ee1/3 B . harmonic terms in the total energy favor the bcc phase for all
2(1 = m\2/6) Ayrans = Rws= &7 (17) X, but that these corrections are overbalanced by anharmonic
B T ) _ ) contributions to the entropy. The change in entropy appears
where Rys=(4/3)"""a is the Wigner-Seitz radius. They tg reflect an increase in the frequency of long-wavelength
then use an approximate formula for the effective frequencghear modes in the bcc phase. This increase also stabilizes

in an Einstein-like model to determink for the fcc and bcc  the bee phase against a linear shear instability observed for
structures. These values df give two predictions for the \>7.67 at lowT

translthn line. As ShOWI’].In Fig. 6, their predictions are We found that shifts in the transition line due to finite-size
gualltatwely correct but lie roughly 10-40%bove our effects are less than 1% M~ 3000—-4000, but that the pres-
Trans o ) _ence of long-range order at temperatures near the transition
The discrepancy in Fig. 6 could be due to a failure eithelline in weakly screened systems requires a cutoff radius
of Eq. (17) or of the approximations used to finkl To test  |arger than that used in some previous stufi2gs21]. Accu-
this we performed equilibrium simulations &% in both  rate simulations of weakly screenéd<3) systems in this
bce(N=3456 and fcc(N=4000 systems. Our results for the temperature range require either larger system sizes or an
rms displacements\¢.. and Ay, are compared to the pre- Ewald-like summation over periodic imagga3]. However,
dictions of Eq.(17) in Table VII. The rms displacements for we have also shown that a reasonably small potential cutoff

V. SUMMARY AND CONCLUSIONS
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need not introduce large errors in a transition line calculatiora benchmark for further studies of more sophisticated
in the moderate-screening regime, provided the cutoff is chomodels.
sen with some care.

It is known that the phase behavior of real systems such
as charge-stabilized colloidal suspensions is not fully de-
scribed by pointlike Yukawa interactions. Recent simulations
of charged macroions in a dynamic neutralizing background
have shown that the repulsive interactions between macro- The simulations in this paper were carried out using
ions are truncated by many-body effects, destabilizing théhe LAMMPS  molecular ~ dynamics  software
crystalline phases in the weak screening linfi0-57. (http:/lwww.cs.sandia.gov/sjplimp/lammps.html Support
Direct, hard-core repulsions also significantly alter the phasom NSF Grant No. DMR-0083286 is gratefully
diagram when the volume fraction is more than a few percenacknowledged.
[53-55. However, we hope that our high-precision calcula-
tion of the point Yukawa fcc-bcc transition line may serve as
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