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Calculations of the work required to transform between bcc and fcc phases yield a high-precision bcc-fcc
transition line for monodisperse point Yukawa(screened-Coulomb) systems. Our results agree qualitatively but
not quantitatively with recently published simulations and phenomenological criteria for the bcc-fcc transition.
In particular, the bcc-fcc-fluid triple point lies at a higher inverse screening length than previously reported.
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I. INTRODUCTION

The screened-Coulomb or Yukawa pair potentialUsrd
=Fe−kr / r has been the focus of great theoretical interest for
two reasons. One is that it describes a wide range of interac-
tions, changing continuously from a pure Coulomb potential
to an effective hard-sphere potential as the inverse screening
lengthk increases. The second is that it provides an approxi-
mate description of the effective interactions between large
ions that are screened by more mobile counterions. In this
context it has been used to describe the interactions between
ions surrounded by electrons in metals[1], dust grains sur-
rounded by electrons in dusty plasmas[2–4], and macroions
surrounded by counterions in charge-stabilized colloidal sus-
pensions[4–8].

The phase diagram of systems of particles interacting with
a Yukawa potential has been studied with both analytic
[9–14] and numerical[14–24] techniques and compared to
experiments on dusty plasmas[25,26] and colloidal suspen-
sions[27–29]. The high-temperature phase is a fluid. There is
no liquid-gas transition because the interactions are purely
repulsive. The stable crystalline phase at zero temperature
changes from bcc to fcc ask increases. The higher entropy
of the bcc phase leads to a greater range of stability as tem-
perature increases until the melting line is reached. Previous
results for the fcc-bcc transition line[11,20–24] vary sub-
stantially and the most recent detailed calculation[23] quotes
an uncertainty of about 10% roughly halfway between the
zero-temperature transition point and the triple point.

In this paper we use a different approach to obtain the
bcc-fcc phase boundary with an uncertainty of only about
1%. Bounds on the free energy difference between the two
phases are obtained by calculating the work done during a
continuous deformation between them. The effect of defor-
mation rate, truncation of the potential, and system size and
geometry are all analyzed to determine systematic errors.
The resulting bcc-fcc transition line is in qualitative agree-
ment with recent simulation results, and quantitative differ-
ences are comparable to the larger error bars quoted by pre-
vious studies. We estimate the location of the bcc-fcc-fluid
triple point using previously published melting-line results
[17,23], and find that it lies at higher inverse screening
lengths than previously reported.

The role of anharmonicity in stabilizing the fcc phase is
analyzed in detail. While anharmonicity increases the energy
of the fcc phase relative to that of the bcc, there is an even
larger increase in the relative entropic contribution to the free
energy that increases the range of stability of the fcc phase.
This appears to reflect an increase in the frequency of the
long wavelength shear modes that dominate the bcc entropy
in the harmonic approximation[21].

Our results are also compared to phenomenological crite-
ria proposed by Vaulinaet al. [10]. These authors predict a
transition at a critical value of the mean-squared displace-
ment about lattice sites, and calculate the displacement using
a simple Einstein-like model. We find that the actual dis-
placement from molecular dynamics(MD) simulations on
our transition line is in reasonable agreement with their phe-
nomenological criterion, but substantially larger than pre-
dicted by their Einstein model.

The details of our calculations are presented in the follow-
ing section. Sec. III provides a detailed analysis of system-
atic errors and presents our results for the phase boundary. In
Sec. IV, we compare our results to previous transition lines,
and Sec. V provides a summary and conclusions.

II. METHOD

A. Free energy difference calculations

Constant numberN, volume V, and temperatureT
sN-V-Td ensembles are most natural for the study of Yukawa
systems for two reasons. First, since the Yukawa potential is
purely repulsive, the macroions in an experiment will expand
to fill the container. Second, the inverse screening lengthk is
density dependent in charged colloidal suspensions and dusty
plasmas[30]. This density dependence is system specific,
and affects the pressures and bulk moduli. Thus any calcula-
tion of coexistence regions will be nonuniversal. For this
reason we focus on finding the Helmholtz free energy differ-
ence DF=Ffcc−Fbcc at fixed volume. Brief discussions of
coexistence are given in Secs. II B and III D

Postma, Reinhardt, and others[31–33] have shown that
the free energy difference between two phases of a system
may be calculated in numerical simulations by evaluating the
external work done on the system along a thermodynamic
path connecting the phases. From elementary thermodynam-
ics, the mechanical workWAB done on a system on an iso-*Electronic address: robhoy@pha.jhu.edu
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thermal path from stateA to stateB gives an upper bound on
the changeDFAB=FB−FA in the system’s Helmholtz free
energy[34]. The workWBA done on the system during the
reverse processB→A is an upper bound onDFBA, and hence
s−WBAd is a lower bound onDFAB.

Bounds onDF for Yukawa systems can be obtained using
a continuous constant-volume Bain deformation path(Fig. 1)
connecting the bcc and fcc lattices. An initially bcc lattice
deformed such that its three cubic symmetry directions are
scaled, respectively, bysz −1/2,z −1/2,zd is transformed into
an fcc lattice of the same density asz varies continuously
from 1 to 21/3 [35]. We calculate the work done along this
path in the forward and reverse directions using strain-
controlled molecular dynamics simulations[36].

Assuming that the systems traverse these paths homoge-
neously, we can calculate the work done from the global
stresses and strains. We define

Wbf = VE
bcc

fcc

s̄ ·dē, s1d

Wfb = VE
fcc

bcc

s̄ ·dē, s2d

wheres̄ and ē are the stress and true strain tensors.Wbf and
s−Wfbd are upper and lower bounds onDF. For these bounds
to be narrow, the intermediate configurations of our systems
must remain statistically representative of thez-dependent
equilibrium distributions asz is variedf31g. In particular, the
stress tensors̄szd must remain near its equilibrium value.

B. Potential parameters

The phase behavior of Yukawa systems is most conve-
niently expressed in terms of dimensionless screening and
temperature parameters. One natural, phase-independent

length scale isa=n−1/3, wheren=N/V is the macroion num-
ber density. The Yukawa potential may then be expressed as

Usrd =
F

a

e−lr/a

r/a
, s3d

wherel=ka is the dimensionless screening parameter. The
limits l→0 andl→` correspond to the exhaustively stud-
ied one-component plasma and hard-sphere systems.

A natural time scale is provided bytE, the period of an
Einstein oscillator in a crystal. The Einstein periods for the
fcc and bcc phases change by an order of magnitude over the
range of l studied heres3ølø8d, yet differ from each
other by less than 1.2% at any givenl within this range. To
obtain consistent results across a wide range of screening
lengths, we normalize all time scales in this study totEsld,
using the fcc values given in Ref.[21].

A natural energy scale is given by the Einstein phonon
energiesmvE

2a2, where m is the macroion mass andvE
=2p /tE is the Einstein frequency. Following Kremeret al.
[20], we define the dimensionless temperature

T̃ =
kBT

mvE
2a2 s4d

using the fcc phonon energies, and plot our phase diagram in

sl ,T̃d space. A dimensionless inverse temperatureG
=sF /ad /kBT called the coupling parameter is used in many

studies of dusty plasmas. The advantage of usingT̃ rather
thanG in Yukawa phase diagrams is that the transition lines
are approximately linear inl.

The bcc and fcc phases coexist in equilibrium over a part
of the phase diagram. Following previous authors[20–23],
we define the bcc-fcc transition line as the curveT̃transsld on

which DF=DFsl ,T̃d=0. This transition line will certainly lie
within the coexistence region, regardless of the thermody-

namic state dependence ofk and F. We find T̃transsld by

calculatingDF at many pointssli ,T̃id on the phase diagram.

C. MD simulation details

We simulateN-V-T ensembles of identical particles using
a velocity-Verlet[37] algorithm to integrate the particle tra-
jectories. The temperature is maintained with a Langevin
thermostat[38]. Periodic boundary conditions are used to
maintain the density. The equations of motion for the posi-
tion qW i and peculiar momentumpW i of the ith particle are

qẆ i = pW i /m+ ė̄qW i , s5d

pẆ i = FW i − ė̄pW i + hW i − pW i /tLang, s6d

where ė̄ is the true strain-rate tensor,FW i is the force due to
Yukawa interactions,hW i is a random noise term, andtLang is
the characteristic relaxation time of the thermostat. We use a
time stepdt=0.01tE to ensure proper integration of Eqs.
s5d ands6d and settLang=10tE. Changingdt andtLang by a
factor of 2 in either direction had no effect on the phase
diagram.

FIG. 1. The Bain transformation. Two cells of a bcc lattice are
shown with lattice directions. The body-center atoms are shown in
black. When the x, y, and z directions are scaled by
s2−1/6,2−1/6,21/3d, the crystal is transformed into an fcc lattice of the
same density. The atoms connected by the dotted lines become two
(100) faces of an fcc unit cell.
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For numerical efficiency we truncate interactions at a cut-
off radius rc. Due to the presence of long range order in
Yukawa crystals, care must be taken in choosing this cutoff
radius. We present the details of our determination ofrcsld in
Sec. III B.

In most of our simulations, we impose the bcc→ fcc Bain
transformation as follows. We start with a lattice of 3456
particles(123 bcc unit cells) in a cubic simulation cell with
edges of lengthLx=Ly=Lz=L0 aligned with thek100l direc-
tions of the lattice. The system is equilibrated for 200 Ein-

stein periods. We then fixż= L̇z/L0 for a timeDt sufficient to

reach the fcc structure:Dt=s21/3−1dż −1. The other cell edges
Lx and Ly are varied to maintain constant volume and tet-

ragonalitysLx=Ly=ÎL0
3/Lzd. The true strain-rate tensorė̄ is

then given by

ėzz= L̇z/Lz = ż/z, s7d

ėxx = ėyy = L̇x/Lx = − ż/2z, s8d

ėxy = ėxz= ėyz= 0. s9d

We compute the diagonal elementssPx,Py,Pzd of the
pressure tensor using standard methods[39]. Equation(1)
then takes on the more physically familiar form

Wbf = −E
0

Dt

sPxLyLzL̇x + PyLxLzL̇y + PzLxLyL̇zddt. s10d

After the system has reached the fcc structure, the deforma-

tion process is reversed by changing the sign ofż. As the
system returns to bcc,Wfb is calculated using the analog of
Eq. s10d.

To minimize uncertainties inT̃transsld, ż must be small
enough for the system to remain near equilibrium. One re-

quirement is that the strain-rate componentssė̄qW id of the ve-
locities must be small compared to the thermal velocity. The

Bain transformation timeDt (which is proportional toż −1)
must also be large compared totLang to allow the thermostat
to transfer heat to or away from the system as necessary to
maintain constant temperature. SincetLang sets the time over
which the system samples the canonical ensemble, the ther-
modynamic sampling improves asDt /tLang increases.

The precision of the calculated transition line depends on
the differencesDFmax−DFmind;Wbf+Wfb=Wcycle between
the bounds onDF. These bounds converge to each other in
the reversible thermodynamic(zero strain-rate) limit. In this
limit, the average workkWcyclel done on the system over a
full deformation cycle(bcc→ fcc→bcc or vice versa) should
vanish. In simulations at finite strain rate, however, there is a
positive systematic error inWcycle due to energy dissipation
[40]. This can be physically interpreted as arising from vis-
cosity. Each applied strain increment takes the system

slightly out of equilibrium. Whenż is small, one expects the
stresses to deviate from their equilibrium values by an

amounts̄visc, ż [41]. Sources of viscous dissipation include

the intrinsic viscosity and the drag forces −pW i /tLang on the
particles applied by the Langevin thermostat. The viscous

dissipation rate is given bys̄visc·ė̄, so one expects the dissi-

pated power to be proportional toż2. Since the total simula-

tion time scales asż −1, the total dissipated energy, and hence
the deviation ofkWcyclel from zero, should be linearly pro-

portional toż. We present theż dependence of our results in
Sec. III A.

III. RESULTS

A. Strain-rate dependence

At temperatures near the transition line, calculations of
the geometrical structure factor and pair correlation function
verify that our systems traverse the Bain transformations ho-
mogeneously. This homogeneity allows us to use Eqs.(1)
and(2) for calculatingWbf andWfb and leads to tight bounds
on DF.

We obtained results similar to those shown in Fig. 2 over
the entire investigated range ofl and for three different val-

ues of ż. Near the transition line,Wbfsl ,T̃d and Wfbsl ,T̃d
vary linearly withT̃ and have nearly opposite(l-dependent)
slopes. The scatter about linear fits toWbfsl ,T̃d and

Wfbsl ,T̃d is consistent with fluctuations inWbf and Wfb at

fixed sl ,T̃d. The intersections of these fits withW=0 give

two estimates,T̃bf and T̃fb, for T̃trans. These are obtained

using data at ten evenly spacedT̃ within about 5% of the
transition line.

For a given system,T̃fb and T̃bf provide upper and lower

bounds onT̃trans sinceWbf.DF.−Wfb and s]DF /]T̃d.0.
We define the fractional uncertainty due to dissipative hys-
teresis as

dhyst= sT̃fb − T̃bfd/sT̃fb + T̃bfd. s11d

The conditionsdhyst, ż andkWcyclel, ż are equivalent due to

the linear dependence ofWbf andWfb on T̃. Figure 3 shows

the ż dependence ofdhyst for l=4 andl=5. The results are

FIG. 2. Simulation results forl=5,ż=10−4/tE. Solid triangles
are values ofWbf, solid squares are values ofWfb. The dashed and

solid lines are linear fits to the results.T̃bf andT̃fb are the intersec-
tions of these lines withW=0.
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consistent with our hypothesis that the energy dissipated is

linear in ż.

We identify T̃trans=sT̃bf+T̃fbd /2 as the best estimate for
the transition temperature for a given system size, system
geometry, and potential cutoff radius. Table I shows that the

fractional variation ofT̃trans with ż is much smaller thandhyst
[42].

In the following, we present results forużu=10−4/tE.

Based on Table I, for this value ofużu the random and finite

strain-rate uncertainties inT̃trans are comparable, both about
0.2%. The combined error is estimated to be less than 0.4%.
The uncertainties given in subsequent tables include only
statistical uncertainties from the linear fits used to calculate

T̃bf and T̃fb.

B. Potential cutoff dependence

We estimate the errors introduced by truncating the force
at rc by calculating the errordEsrcd in the potential energy
difference. If the error inDF is of the same order, then the
fractional error in the transition temperature is

dcut ;
dT̃srcd

T̃
.

1

T̃

] T̃

] DF
dEsrcd. s12d

Here s]T̃/]DFd is known near the transition line from the
work calculations.

The cutoff-induced error in the potential energy difference
can be written in terms of the pair correlation functions
gfccsrd andgbccsrd of the fcc and bcc crystals. ForN particles

dEsrcd =
N

2
E

rc

`

Usrdfgfccsrd − gbccsrdg4pr2dr/a3. s13d

If V;maxhugfccsrd−gbccsrd u , r ù rcj, then

udEsrcdu
NsF/ad

,
V

Fa2E
rc

`

Usrd2pr2dr =
2pVs1 + lrc /ade−lrc /a

l2 .

s14d

One expectsV to be of order 1 at finite temperature.

For l=3,4, and 5, weestimateddEsrcd at T̃. T̃trans by
calculating the pair correlation functions in large systems
using large cutoff radii and long integration times. Due to the
exponential falloff ofUsrd and finite temperature smoothing
of gsrd, the infinite upper bound in Eq.(13) can be replaced
by a finite valuer l without introducing significant errors. We
found lr l =30a to be sufficiently large.

Figure 4 shows our estimate ofudEsrcd / sNF /adu from Eq.
(13) and the value ofudE/ sNF /adu corresponding todcut

=0.01 for l=3, the longest-range potential considered. We
found thatV decreases from 1.4 to 0.62 asrc increases from
3.5a to 6.5a. The actual error is always smaller than the
bound given byV becausegfcc−gbcc oscillates in sign. The
envelope shown corresponds toV=1/3. Because of the
sharp variation ofdEsrcd, we use this envelope to estimate
dcut.

To test Eq.(12) we calculatedT̃trans as a function ofrc for
l=3. Results are shown in Table II. The fractional changes

in T̃trans from rc=3.5a to rc=6.667a and fromrc=4.667a to
rc=6.667a are 19% and 0.9%, respectively. Both changes are
about one fifth of the estimates fordcut from Eqs.(12) and
(13). No statistically significant changes are expected or ob-

FIG. 3. (Color online) Strain-rate dependence ofdhyst. Solid
circles indicatel=4 results. Empty squares indicatel=5 results.
The solid and dashed lines are linear fits to the data. The error bars
indicate statistical uncertainties.

TABLE I. Dependence ofT̃transsld on dimensionless strain
rate.

żtE 103T̃trans sl=4d 103T̃trans sl=5d

5310−5 1.637±0.003 2.363±0.002

1310−4 1.634±0.004 2.365±0.004

2310−4 1.633±0.005 2.366±0.005

FIG. 4. Determination ofrc for l=3. The heavy curve is our

estimate ofdEsrcd obtained from simulations atT̃=8.84310−3,
with r l =10a. The dashed line is the analytic upper bound ondEsrcd
from Eq. (14) with V=1/3. Thehorizontal line is the value ofudEu
in Eq. (12) corresponding toudcutu=0.01.
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served for rcù5.833a. We conclude that errors estimated
from the envelopes of curves like Fig. 4 give a conservative
estimate of cutoff errors.

To ensure that the fractional systematic errors were no
larger than our random and rate errors, we choserc slightly
above the values corresponding toudcutu=0.002. Forl=3,4,
and 5, we used cutoff radii of 5.833a, 4.375a, and 3.5a in the

simulations used to determineT̃trans. Smallerrc can be used
at higher l both because the interactions weaken and

T̃trans/ T̃melt increases, leading to a smallerV. For lù5 we
fixed the cutoff radius atrc=3.5a.

C. System size and geometry dependence

To examine finite-size effects we also considered a 432-
particle system(initial state 63 bcc unit cells). Because the
corresponding fcc state has transverse length 6.73a, the mini-
mum image convention requiresrc,3.367a, and we used
rc=3.3a. To separate outrc dependence from system size
dependence, we also recalculated the transition line forN
=3456 for 5ølø8 with rc=3.3a.

Table III shows a comparison of our calculated transition
temperatures. TheN=432 values were systematically lower,
but the effect was small. From theoretical considerations one
expects the leading finite size corrections toDF /N to be
proportional to 1/N [43]. This should produce a correspond-

ing error inT̃trans. As shown in Table III, the changes inT̃trans
from N=432 toN=3456 were all about 1%. The changes in

T̃trans from N=3456 toN=` for this system geometry should
be about eight times smaller.

Another test indicates that finite-size effects are larger
than the above estimate. The geometry was changed so that
the fcc state has equal cell edges and the bcc state hasLx
=Ly=Î2Lz. These simulations contained 103 fcc unit cells
(4000 particles) with the k100l directions parallel to the
simulation cell edges. After Bain transformation, the bcc
state has twok110l directions parallel to the simulation cell

edges. As shown in Table IV, the values ofT̃trans obtained for
both l=4 and l=7 were 0.6% lower than those obtained
with the standard system geometry[44]. Other simulations
verified that this was due solely to the change in boundary
conditions. We conclude that our dominant source of uncer-
tainty is finite size and is less than 1%.

We attribute the observed sensitivity to geometry to the
change in allowed low-frequency modes. These modes play
a disproportionate role in determining the entropy in lattice
dynamics calculations[45] and drive the fcc→bcc transition
with increasing temperature[21]. Since the shear velocity is
highly anisotropic in the bcc phase, changing the boundaries
affects the sampling of these low-frequency modes and thus
DF.

D. Transition line

Table V shows our calculatedT̃transsld with statistical un-
certainties. As described above, the combined systematic er-
rors due to finite strain rate, system size, and potential cutoff
are estimated to be less than 1%. Results of a cubic polyno-
mial fit to the data are also given:

104T̃trans
fit sld = 6.466 78sl − l0d + 0.430 01sl − l0d2

− 0.068 06sl − l0d3, s15d

where l0=1.718 is thezero-temperature transition point
obtained from lattice statics calculationsf46g. Lower-
order polynomials fail to adequately fit the data within our
uncertainties.

Figure 5 shows the polynomial fit and two previously
published solid-fluid coexistence lines[17,23]. The intersec-
tions of these lines give estimated values of the bcc-fcc-fluid
triple point. Using results from Ref.[17] we find sltp

=7.45,T̃tp=0.003 84d. Those from Ref. [23] yield sltp

=7.84,T̃tp=0.004 01d.

TABLE II. T̃trans vs rc for l=3. udcutu is given by Eq.(12) and
the bound in Eq.(14).

rc udcutu 103T̃trans

3.5a 1.04 1.048±0.003

4.667a 0.041 0.871±0.002

5.833a 0.0015 0.880±0.002

6.667a 0.00014 0.879±0.003

TABLE III. Dependence ofT̃trans on N.

l 103T̃trans sN=432d 103T̃trans sN=3456d

5 2.350±0.009 2.362±0.004

6 2.985±0.011 3.021±0.003

7 3.562±0.009 3.593±0.005

8 4.064±0.008 4.087±0.005

TABLE IV. Dependence ofT̃trans on system geometry.

l 103T̃trans sN=3456d 103T̃trans sN=4000d

4 1.634±0.004 1.625±0.004

7 3.592±0.004 3.570±0.004

TABLE V. Calculated and fit values ofT̃trans. Only statistical
uncertainties are quoted.

l 103T̃trans 103T̃trans
fit

3 0.880±0.002 0.885

4 1.634±0.004 1.619

5 2.365±0.004 2.345

6 3.017±0.004 3.023

7 3.592±0.004 3.613

8 4.085±0.004 4.072
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If we assume that the parametersk and F are density
independent, we can calculate the width of the bcc-fcc coex-
istence region from the pressures and bulk moduli of the two
phases on the line whereDF=0. The bcc pressure is larger
than the fcc pressure by only about 0.04% forl=4, and by
0.65% for l=7. This results in a higher density in the fcc
phase at coexistence, but only by about 0.015% atl=4 and

0.2% at l=7. The corresponding changes inl and T̃ are
much smaller than the uncertainties in our calculated transi-
tion line. The coexistence region in experimental systems
may be much larger due to variations ink andF with den-
sity [26,29]. As noted above, these variations are system spe-
cific and a more complete treatment is beyond the scope of
this paper.

E. Anharmonic effects

The lower dotted line in Fig. 5 shows lattice dynamics
results for the bcc-fcc transition line[21]. In this approxima-
tion the energy and entropy differences,DELD andDSLD, are
independent ofT. The fcc-bcc transition line is given by

TLD=DELD /DSLD. The resulting curve lies belowT̃trans, in-
dicating that the fcc phase is stabilized by anharmonic effects
[21,23]. This implies that the anharmonic component of the
free energy difference,

DFan ; DEan − TDSan = DF − DFLD, s16d

is negative on the transition line. The relative signs and mag-
nitudes ofDEan and DSan may be calculated by comparing
our accurate measurements of free and total energy differ-
ences with the lattice-dynamics results.

Table VI shows results for anharmonic contributions to
the free and total energy differences on the fit transition line
[47]. The values ofDFan are known from the work calcula-

tions, while the values ofDEan were found from separate
equilibrium simulations. The anharmonic corrections to the
total energy favor the bcc phase for alll, i.e., Efcc−Ebcc on
the transition line has increased relative to its zero-
temperature value. The anharmonic contributions to the free
energy difference, however, are larger in magnitude and op-
posite in sign, implying that anharmonic entropic contribu-
tions to DF favor the fcc phase at alll and overwhelm
energetic contributions.

In lattice calculations the larger entropy of the bcc phase
comes mainly from the lower frequency of its shear modes.
Some of these modes have negative energy forl.7.67,
causing the bcc phase to become linearly unstable at low
temperatures[21]. It is interesting that the onset of this low-
temperature instability is close toltp. However, we have
performed runs near the melting line forl as large as 10 and
find that the bcc phase remains metastable. This implies that
anharmonic effects have increased the frequency of long
wavelength shear modes, providing an explanation for the
decreased entropy advantage of the bcc phase.

IV. COMPARISON TO PREVIOUS RESULTS

Miller and Reinhardt were the first authors to use Bain
deformation paths to obtain bounds onDF for Yukawa sys-
tems [24]. They calculated the work by integrating the
change in the Hamiltonian rather than from the stresses and
strains. The large discrepancy between theirl=7 transition
temperature and our result is likely due to their extremely
small system sizesN=108d, which was just used to illustrate
their method.

The earliest MD calculations[20,21] of the transition line
also deviate substantially from ours, particularly at largel.
The upper dotted line shown in Fig. 5 is a fit between points
where the fcc and bcc phases were found to be stable. The
gap between points was about 20% and the final shape was
strongly influenced by a bcc-stable point above the melting
line. Other points where the bcc phase was stable lie close to

our T̃trans but are shifted up due to the smallerrc used.
Our transition line is in qualitative agreement with more

recent MD and Monte Carlo results[22,23]. Dupont et al.
calculated a fcc-bcc coexistence point and the fcc-bcc-fluid
triple point using small systemssN.250d. Although their

triple point sltp=6.75,T̃tp=0.0034d lies well below ours

sltp=7.7±0.3,T̃tp=0.0039±0.0001d and well below recently

FIG. 5. Phase diagram of Yukawa systems. The heavy line is our
cubic polynomial fit for the bcc-fcc transition line. The light solid
line is the fcc-bcc transition line from Ref.[23]. The lower and
higher dotted lines are, respectively, the lattice dynamics and mo-
lecular dynamics bcc-fcc transition lines from Ref.[21]. The tri-
angles are a bcc-fcc coexistence point and triple point from Ref.
[22], and the solid square is a bcc-fcc transition point from Ref.
[24]. The dashed and dash-dotted lines are the melting lines from
Ref. [17,23]. The empty squares denote our estimates for the bcc-
fcc-fluid triple point.

TABLE VI. Anharmonic free and total energy differences evalu-

ated atT̃trans
fit sld.

l 102DFan/NkBT 102DEan/NkBT

3 −0.58±0.1 0.42±0.33

4 −1.07±0.12 1.0±0.4

5 −1.92±0.15 1.2±0.4

6 −3.03±0.17 2.4±0.4

7 −4.33±0.21 2.2±0.4
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published melting lines[17,23], it lies only about 2% below
our fcc-bcc transition line.

Hamaguchi,et al. also obtain a lower triple pointsltp

=6.90,T̃tp=0.0038d because their bcc-fcc transition tempera-
tures are systematicallys6–10%d higher than ours[23]. One
possible explanation is that their equilibration times were too
short. They used thel-independent time unitt=Î3vp

−1,
wherevp=Î4pnF /m is the plasma frequency. Starting with
perfect bcc and fcc lattices as their initial conditions, they
equilibrated their systems for a maximum of 300t before
beginning their free energy measurements. This corresponds
to about 27tE for l=3 and only 4tE for l=8. Since the latter
is only about four times the velocity autocorrelation time,
and comparable to the time for sound to propagate across
their simulation cells, it is doubtful that their systems had
equilibrated sufficiently at highl. Too short an equilibration
time could cause overestimation of the stability of the phase
with lower entropy, the fcc phase, which is consistent with
their findings.

Vaulina and colleagues have proposed phenomenological
criteria for the bcc-fcc transition[10]. They assume thatk−1

is an effective hard-sphere radius and predict that the value
of the rms displacement at the fcc transitionDtrans satisfies

2s1 − pÎ2/6d−1/3Dtrans= RWS− k−1, s17d

where RWS=s4p /3d−1/3a is the Wigner-Seitz radius. They
then use an approximate formula for the effective frequency
in an Einstein-like model to determineD for the fcc and bcc
structures. These values ofD give two predictions for the
transition line. As shown in Fig. 6, their predictions are
qualitatively correct but lie roughly 10–40%above our

T̃trans.
The discrepancy in Fig. 6 could be due to a failure either

of Eq. (17) or of the approximations used to findD. To test

this we performed equilibrium simulations atT̃trans
fit in both

bccsN=3456d and fccsN=4000d systems. Our results for the
rms displacements,D fcc and Dbcc, are compared to the pre-
dictions of Eq.(17) in Table VII. The rms displacements for

the fcc structure lie quite close to the prediction for smalll,
and about 13% above it atl=7. Finite size effects decrease
D fcc relative to theN=` value[45,48]. These results indicate
that most of the error in the transition lines of Vaulinaet al.
comes from substantial underestimation of the rms displace-
ments. They calculateD in the harmonic approximation, and
anharmonic corrections increaseD for thesel [21]. Note that
the measured bcc displacements in Table VII are larger due
to the bcc lattice’s softer shear modes[21].

V. SUMMARY AND CONCLUSIONS

We calculated the bcc-fcc coexistence line of Yukawa sys-
tems to an uncertainty of approximately 1% through integra-
tion of the mechanical work along Bain transformation paths.
The range of bcc stability was found to be slightly greater
than that found in previous comprehensive studies[21–23],
and the triple point shown to lie at higher inverse screening

length. The large changes inT̃trans with rc for small l indi-
cate that the relative stability of fcc and bcc phases depends
sensitively on long-range correlations, and calls into question
the use of local nearest-neighbor arguments to calculate the
transition line. Nevertheless, we found that one such phe-
nomenological criterion[10], derived from the idea that the
fcc phase is stable when interparticle interactions are hard-
sphere-like[49], predicts the transition line remarkably well
when combined with MD results for the mean-squared dis-
placement.

Comparison with lattice-dynamics results shows that an-
harmonic terms in the total energy favor the bcc phase for all
l, but that these corrections are overbalanced by anharmonic
contributions to the entropy. The change in entropy appears
to reflect an increase in the frequency of long-wavelength
shear modes in the bcc phase. This increase also stabilizes
the bcc phase against a linear shear instability observed for

l.7.67 at lowT̃.
We found that shifts in the transition line due to finite-size

effects are less than 1% ifN,3000–4000, but that the pres-
ence of long-range order at temperatures near the transition
line in weakly screened systems requires a cutoff radius
larger than that used in some previous studies[20,21]. Accu-
rate simulations of weakly screenedsl,3d systems in this
temperature range require either larger system sizes or an
Ewald-like summation over periodic images[23]. However,
we have also shown that a reasonably small potential cutoff

FIG. 6. Comparison of transition line to analytic estimates. The

heavy line is ourT̃trans
fit sld. The dashed and dotted lines are the

analytic estimates for the bcc→ fcc and fcc→bcc transitions from
Ref. [10].

TABLE VII. Rms displacements atT̃trans
fit sld. Dtrans is the pre-

diction from Eq.(17), while D fcc andDbcc are results from equilib-
rium MD simulations.

l Dtrans/a D fcc/a Dbcc/a

3 0.0915 0.089 0.096

4 0.1181 0.118 0.128

5 0.1341 0.140 0.154

6 0.1447 0.159 0.177

7 0.1522 0.171 0.192
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need not introduce large errors in a transition line calculation
in the moderate-screening regime, provided the cutoff is cho-
sen with some care.

It is known that the phase behavior of real systems such
as charge-stabilized colloidal suspensions is not fully de-
scribed by pointlike Yukawa interactions. Recent simulations
of charged macroions in a dynamic neutralizing background
have shown that the repulsive interactions between macro-
ions are truncated by many-body effects, destabilizing the
crystalline phases in the weak screening limit[50–52].
Direct, hard-core repulsions also significantly alter the phase
diagram when the volume fraction is more than a few percent
[53–55]. However, we hope that our high-precision calcula-
tion of the point Yukawa fcc-bcc transition line may serve as

a benchmark for further studies of more sophisticated
models.
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