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Densest versus jammed packings of two-dimensional bent-core trimers
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We identify the maximally dense lattice packings of tangent-disk trimers with fixed bond angles (θ = θ0) and
contrast them to both their nonmaximally-dense-but-strictly-jammed lattice packings as well as the disordered
jammed states they form for a range of compression protocols. While only θ0 = 0, 60◦, and 120◦ trimers can
form the triangular lattice, maximally-dense maximally-symmetric packings for all θ0 fall into just two categories
distinguished by their bond topologies: half-elongated-triangular for 0 < θ0 < 60◦ and elongated-snub-square
for 60◦ < θ0 < 120◦. The presence of degenerate, lower-symmetry versions of these densest packings combined
with several families of less-dense-but-strictly jammed lattice packings act in concert to promote jamming.
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I. INTRODUCTION

Jamming of anisotropic constituents has attracted great
interest [1–5] for two reasons. The first is that under-
standing how anistropy affects jamming is critical because
most real granular materials are composed of anisotropic
grains. The second is that constituent-particle anistropy af-
fects systems’ jamming phenomenology and their thermal-
solidification phenomenology in similar ways, and hence
studying the jamming of grains of a given shape can provide
insight into the thermal solidification of similarly shaped
molecules and/or colloids [6–9]. Such studies are maximally
effective when they are complemented by identifying the par-
ticles’ densest possible packings since the differences between
densest and jammed packings are often analogous to the
differences between crystals and glasses formed via thermal
solidification [9–11].

Bent-core trimers are a simple model for multiple liquid-
crystal-forming [12] and glass-forming [13–16] molecules.
As illustrated in Fig. 1, their shape can be characterized
using three parameters: the bond angle θ0, the ratio r of
end-monomer radius to center-monomer radius, and the ratio
R of intermonomer bond length to center-monomer diameter.
For example, para-, meso-, and orthoterphenyl correspond to
the molecule shown in Fig. 1 (with θ0 = 0◦, 60◦, and 120◦,
respectively), and the popular Lewis-Wahnstrom model [17]
for OTP implements this molecular geometry with R =
2−1/6, r = 1, θ0 = 105◦. It is well known that the properties
of systems composed of such molecules depend strongly on
all three of these parameters; for example, the three ter-
phenyl isomers form very differently structured bulk solids
under the same preparation protocol [13], as do xylenes [14],
diphenylcycloalkenes [15], and homologous series of cyclic
stilbenes [16]. The structural isomers and near-isomers of
more complicated small molecules also often exhibit very
different solidification behavior, e.g., the trisnapthylbenzenes
which have attracted great interest in recent years because
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they have been shown to form quasi-ordered glasses when
vapor-deposited [18–22].

Our understanding of such phenomena and hence our
ability to engineer crystallizability and glass-formability at the
molecular level remains very limited. One of the reasons why
this is so is that only a few theoretical studies have isolated
the role played by molecular shape using simple models.
Molecules like those studied in Refs. [18–22] tend to form
liquid-crystalline phases with columnar order [21]. Studying
packing of 2D models for these molecules corresponds to
studying the in-plane ordering of such anisotropic phases. Op-
timal packing of molecules with the geometry shown in Fig. 1
has been investigated only minimally; Ref. [23] reported
the densest packings of 2D R = 1/2 trimers as a function
of r and θ0. The tangent-disk (r = R = 1) case shown in
Fig. 1(b) is of considerable interest because it allows straight-
forward connection to results obtained for monomers—and
hence isolation of the role played by the bond and angular
constraints—while remaining a reasonable minimal model
for terphenyl-shaped molecules. In this article, we identify
and characterize the densest lattice packings of 2D bent-core
tangent-disk trimers as a function of their bond angle θ0, and
contrast them to both their nonmaximally dense-but-strictly
jammed lattice packings and the disordered jammed packings
they form under dynamic compression.

II. DENSEST PACKINGS

The only θ0 allowing formation of the triangular lattice
[which is the densest possible 2D disk packing, with φ =
φtri = π/(2

√
3) � .9069] are 0◦, 60◦, and 120◦. In this sec-

tion, we identify the densest packings for all θ0.
A potential geometry of the densest packings for 0 � θ0 �

60◦ is shown in Fig. 2(a). Black circles indicate the monomer
positions for a reference trimer centered at the origin. For
this range of θ0, another similarly oriented trimer can be
centered at �c2 = [1/2,

√
3/2], with its leftmost and right-

most monomers respectively at �l2 = [1/2 − cos(θ0),
√

3/2 +
sin(θ0)] and �r2 = [3/2,

√
3/2]. Then the center monomer

of a third trimer with this orientation can be placed at
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FIG. 1. Rigid bent-core disk-trimers with bond angle θ0. Panel
(a) shows the general geometry with unspecified (r, R). Here we
study the r = R = 1 case shown in panel (b).

�c3 = [2 + cos(θ0),− sin(θ0)]. A horizontally oriented unit
cell with lattice vectors �b1, �b2 is obtained by rotating �c2, �c3

through the angle δ(θ0) = tan−1(sin(θ0)/[2 + cos(θ0)]). The
area of this unit cell is

A1(θ0) = det

([�b1
�b2

])
= det

([�c2

�c3

])
, (1)

which yields the packing fraction of lattices with this geome-
try:

φ1(θ0) = 3π

4A1(θ0)
=

(
3

2 + cos(θ0) + sin(θ0)/
√

3

)
φtri. (2)

φ1(θ0) is maximal [φ1 = φtri] at θ0 = 0 and 60◦, and mini-
mal (φ1 = 3π/[4(1 + √

3)] � 0.862 � 0.951φtri ) at θ0 = 30◦.
The factors of 3 in the numerators in Eq. (2) reflect the fact that
there are three monomers per trimer.

For θ0 > 60◦, it is impossible to center a second trimer
at [1/2,

√
3/2]. We postulate that the densest packings

correspond to the double lattices described by Kuperberg,
Torquato, and Jiao [24,25]. Double lattice packings consist
of two lattices related by a displacement plus a 180◦ rotation
of all constituents about their centers of inversion symmetry.
They are often the densest possible packings for both con-
vex [24] and concave [25] particles. Trimers are inversion-
symmetric about the centroids of their center monomers.
Figure 2(b) shows our postulated lattice geometry. The left-
most monomer of a second trimer may be placed at �l2 = [1 −
cos(θ0), sin(θ0)]. Then its center monomer lies at �c2 = [2 −
cos(θ0), sin(θ0)] and its rightmost monomer at �r2 = [2, 0].
This trimer is related to the reference trimer by a 180◦ rotation
about its inversion center plus displacement by �c2. The lattice
vectors for this geometry are �b1 = [1/2 − cos(θ0),

√
3/2 +

sin(θ0)] and �b2 = [3, 0]. Its unit-cell area A2(θ0) is

A2(θ0) = det

([�b1
�b2

])
, (3)

and its packing fraction is

φ2(θ0) = 6π

4A2(θ0)
=

(
1

1/2 + sin(θ0)/
√

3

)
φtri. (4)

φ2(θ0) is maximal [φ2 = φtri] at θ0 = 60◦ and 120◦ and min-
imal [φ2 = π/(2 + √

3) � 0.842 � 0.928φtri] at θ0 = 90◦.
The factor of 6 (rather than 3) in Eq. (4) reflects the fact that
these packings have 2 trimers per lattice cell.

Our postulated maximal packing density for 2D bent-core
trimers is

φmax(θ0) =
{
φ1(θ0), 0 � θ0 � 60◦
φ2(θ0), 60◦ � θ0 � 120◦. (5)

The variation of φmax with θ0 is illustrated in Fig. 2(c). As
discussed above, minimal φmax(θ0) occur at the θ0 that are
most distant from those commensurable with the triangular
lattice, i.e., 30◦ and 90◦. Kuperberg [24] identified a lower
bound φK = √

3/2 for the maximal packing density of iden-
tical convex particles. For 71.4◦ � θ0 � 108.6◦, φmax � φK ,
indicating trimers’ concavity plays a critical role in decreasing
φmax for (at least) this range of θ0. The role of interlocking
phenomena specific to concave particles [2,25] in determining
φmax(θ0) and the jamming density φJ (θ0) will be discussed
further below.

Figure 3 shows the lattice packings associated with these
motifs for several representative values of θ0. For 0 < θ0 <

60◦ these consist of triple layers of triangular lattice separated
by lines of “gap” defects. The gaps are necessary to accom-
modate the incommensurability of the three-body fixed-angle
(θ = θ0) constraints with the triangular lattice. The size and
shape of the gaps varies with θ0 and determines φmax(θ0),
but their overall orientation does not change. For 60◦ <

θ0 < 120◦ the impossibility of centering a second trimer at
[1/2,

√
3/2] (Fig. 2) makes forming triple layers of triangular

lattice impossible; instead, the maximally dense packings are
composed of double layers of triangular lattice separated by
lines of gap defects. This larger concentration of gaps is
responsible for the lower φmax for θ0 > 60◦. For example,
[φtri − φmax(90◦)]/[φtri − φmax(30◦)] = 2(

√
3 − 1) � 1.46 is

close to the value (3/2) that might be naively expected from

FIG. 2. Structure of the putatively densest trimer packings. Panel (a): lattice configuration for 0 � θ0 � 60◦. Panel (b): lattice configuration
for 60◦ � θ0 � 120◦. Panel (c): Postulated maximal density φmax(θ0 ) [Eqs. (2), (4), and (5)].
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FIG. 3. Putatively densest packings for 2D bent-core trimers.
The top panels show the molecular geometries for θ0 = 0, 15◦,
30◦, 45◦, 60◦, 75◦, 90◦, 105◦, and 120◦. The bottom panels show
the bond/contact topologies for the same systems, with noncova-
lent contacts indicated by blue (darker) lines. Black parallelograms
show the unit cells, which are primitive cells for θ0 < 60◦ and
contain 2 trimers for θ0 � 60◦. Green (lighter) lines show covalent
bonds.

the θ0 > 60◦ packings’ larger gap concentration, and in fact

φtri − φmax(90◦)

φtri − φmax(30◦)
· φmax(30◦)

φmax(90◦)
= 3

2
. (6)

Further insight into the structure of these lattice pack-
ings can be gained by examining the topology of their
bond/contact network. As shown in the bottom panels of
Fig. 3, the bond and contact network is composed of trian-
gles corresponding to monomers in close-packed layers and
parallelograms corresponding to monomers bordering gaps.
For θ0 = 0◦, 60◦, and 120◦, the opposite corners of the
parallelograms form additional contacts as the gaps close. The
average monomer coordination numbers are

Zmon =
⎧⎨
⎩

6, θ0 = 0, 60◦, or 120◦
16/3, 0 < θ0 < 60◦
5, 60◦ < θ0 < 120◦

, (7)

where Zmon includes both covalent bonds and noncovalent
contacts. The lower coordination and less efficient packing for
60◦ < θ0 < 120◦ are both consistent with the idea that con-
cavity plays a more important role in these systems [11,25];
both trends arise from the inability of a reference trimer to
form a bond-triangle on its concave side with a monomer
belonging to a second trimer when θ0 > 60◦; i.e., they arise

FIG. 4. Degeneracy of the densest lattice packings. The top pan-
els illustrate one of the degeneracies for θ0 = 45◦: Panel (a) shows
the arrangement depicted in Fig. 2(a), while panel (b) shows a degen-
erate flipped-and-shifted version of this arrangement with the same
φ = φmax(θ0 ). The bottom panels illustrate one of the degeneracies
for θ0 = 90◦: Panel (c) shows the arrangement depicted in Fig. 2(b),
while panel (d) shows a degenerate φ = φmax(θ0) arrangement with
different symmetry and gap topology.

from the difference between the arrangements depicted in
Figs. 2(a) and 2(b).

One might expect that the parallelogramic bond and con-
tact arrangements depicted in Fig. 3 are associated with
soft shear modes (as they often are in monomeric systems).
In these maximally dense lattice packings, however, the
fixed-angle constraints prevent the parallelograms from being
sheared without violating hard-disc overlaps [26,27]. More-
over, since monomers are highly overconstrained in these
packings, trimers are necessarily also highly overconstrained.
We will show below that the dense lattice packings identified
here are in fact all strictly jammed [27].

A key factor influencing both jamming and glass-formation
in systems of constituents that are able to crystallize is
competition of degenerate crystalline structures. For example,
monodisperse sphere packings jam far more readily than
monodisperse disk packings [28] because there are two in-
commensurable close-packed lattices in 3D (i.e., FCC and
HCP [29]) but only a single close-packed lattice in 2D (i.e.,
the triangular lattice). Finding the geometries shown in Figs. 2
and 3 did not address the question of degeneracy. It turns out
that these lattices are highly degenerate. Figure 4 illustrates
how these degeneracies arise. For 0 < θ0 < 60◦, rotating the
trimers in alternating layers (here depicted in blue and red) by
180◦ about their inversion-symmetry centers and then shifting
them by [1 − cos(θ0), sin(θ0)] produces a lattice with the
same φ = φmax(θ0). For 60 < θ0 < 120◦, rotating the blue
trimers so that their concave sides point away from rather than
towards the centroids of the red trimers they double-contact
achieves the same effect.

The degenerate lattices depicted in Figs. 4(a), 4(b) and
4(c), 4(d) differ in their symmetries and gap topologies. They
represent competing ordered structures that are essentially
trimeric—they are not present for monomers or dimers be-
cause their existence requires the fixed-angle (θ = θ0) con-
straints. Other degenerate arrangements with φ = φmax(θ0)
also exist. We expect that there are in fact infinitely many
of them, just as there are infinitely many variants of the
close-packed lattice in 3D. The arguments of Ref. [28] suggest
that all this degeneracy should strongly promote jamming and
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suppress crystallization in bent-core-trimeric systems relative
to their monomeric and dimeric counterparts. Below, we will
investigate the degree to which this is true.

Jennings et al. [23] found that for R = 1/2 trimers, double-
lattice packings are not optimally dense for some θ0 and r .
In these special cases, the densest packings are lattices with
bases containing more than two trimers. To see whether this
is true for our r = R = 1 systems, we identify maximally
dense lattice packings for bases of various sizes using a
variant of Torquato et al.’s adaptive shrinking cell (ASC)
algorithm [10,11]. Figure 5(a) shows our ASC geometry for
periodic cells containing ntri trimers. The algorithm we use
to obtain both optimally dense and less-dense packings is
described in detail below (in Sec. III). Figure 5(b) com-
pares our analytic prediction for φmax(θ0) to the maximal-
density lattice packings found from ASC runs for ntri � 4.
For both ntri = 2 and ntri = 4, ASC results converge (within
our numerical precision) to our putatively densest configura-
tions or their degenerate counterparts. These results indicate
a key difference between the densest packings of the r =
R = 1 trimers considered here and those of the R = 1/2
trimers studied in Ref. [23] (wherein larger bases produce
denser lattice packings for some r and θ0). The simpler
behavior for r = R = 1 appears to result from a reduction
in the number of ways that small numbers of trimers can
fit together when the trimers are composed of monodis-
perse tangent disks as opposed to bidisperse overlapping
disks.

Another important difference associated with the above-
mentioned degeneracies appears for ntri > 2. As shown in
Fig. 5(c), packings with φ = φmax(θ0) may be formed by
alternating layers of the degenerate structures identified above
(Fig. 4). Increasingly complicated arrangements of this type
become possible as ntri increases. This effect is analogous to
the increasing number of distinguishable ways to stack Nl

layers of triangular lattice to form 3D close-packed structures
as Nl increases, and should further promote jamming.

III. JAMMED PACKINGS

A. Statics: Nonoptimally dense strictly jammed lattice packings

Having identified the maximally dense lattice packings,
we now characterize the less-dense strictly jammed lattice
packings of these systems. Our ASC algorithm [illustrated
in Fig. 5(a)] is implemented as follows. Since translational
invariance implies that trimer 0 can be centered at the ori-
gin (x0 = y0 = 0) without loss of generality, systems have
Ndof = 4 + 3(ntri − 1) degrees of freedom: the cell shape
parameters α, β, γ and the trimer-arrangement variables [φ,
and xi, yi, φi for i = 1, 2, . . . , ntri − 1]. Starting values of α

and β are chosen to be sufficiently large that all ntri trimers
are able to freely rotate within the cell while γ = 0. Strictly
jammed packings are obtained through four types of moves:
(1) random incremental changes of (α, β, γ ) accompanied
by affine displacements of the trimer centers [(xi, yi) for
i = 1, 2, . . . , ntri − 1]; (2) single-particle moves consisting
of random incremental changes of φ or of (xi, yi, φi) for
some i = 1, 2, . . . , ntri − 1; (3) collective moves consisting
of rigid translations or rotations of (j � ntri)-trimer subsets

FIG. 5. Panel (a): Schematic depiction of our adaptive shrinking
cells for ntri = 4. Periodic images of the ntri trimers are present in
the ASC algorithm but are not shown here. Panel (b): Comparison
of analytic φmax(θ0) [Eqs. (2), (4), and (5); solid curve] to ASC
results for ntri = 2 (red *) and ntri = 4 (green x) with Xfinal � 7
(cf. Sec. III). ntri = 3 is not considered here because lattices with
bases containing an odd number of trimers cannot be double lattices
and hence are generally less than maximally dense for θ0 > 60◦.
The data for ntri = 2 and 4 overlap; for clarity, results are presented
for alternating values of θ0. Panel (c): One of the maximally-dense
ntri = 4 lattice packings for θ0 = 90◦ contains alternating layers of
the degenerate φ = φmax(90◦) ntri = 2 lattices shown in Figs. 4(c)
and 4(d).

of trimers 0, 1, . . . , ntri − 1 [30]; (4) changes of (α, β, γ )
that preserve volume. Type (1) moves are accepted if they
reduce the cell volume A = αβ cos(γ ) without producing any
particle overlaps, while moves of types (2–4) are accepted if
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they produce no particle overlaps. The initial maximal incre-
ment sizes for these moves are fixed at {|δα| = 0.05 × 2−X,

|δβ| = 0.05 × 2−X, |δφ| = 2.5◦ × 2−X, |δxi | = 0.25 × 2−X,

|δyi | = 0.25 × 2−X, |δφi | = 2.5◦ × 2−X} with X = 0. After
the process of compressing the system using moves of types
(1–3) has converged [i.e., no more moves of these types are
being accepted], the system is collectively jammed [27] for the
given value of X. Then moves of type (4) are used to check for
strict jamming. Successful type-4 moves indicate the system
is not strictly jammed; when they occur, moves of types (1–3)
are begun again. This process repeats itself until the system is
strictly jammed with respect to moves of types (1–4) for the
given value of X. Then X is increased by 1 and the process
begins again. This is repeated until satisfactory convergence
is achieved; the data in Fig. 5(b) indicate the maximally dense
packings found by our algorithm that are strictly jammed
for Xfinal � 7.

As discussed in Refs. [10,11], improved performance of
the algorithm can be obtained by adjusting the X-increment
and/or adopting more complicated Monte Carlo schemes such
as allowing occasional acceptance of moves that increase A.
To obtain a wide range of packings, including both optimally
and nonoptimally dense geometries, it is necessary to em-
ploy a wide range of trimer-arrangement initial conditions
for each θ0. This requirement combined with the fact that
the computational complexity of the above-discussed type-3
moves is roughly exponential in Ndof prohibited extending our
comprehensive ASC studies to ntri > 4. However, studies of
selected θ0 for ntri = 6 found no packings with φ > φmax(θ0),
and as we will show below, much insight can be combined
by combining ntri � 4 ASC studies with large-ntri molecular
dynamics simulations.

As shown in Fig. 6(a), at least ten distinct families of
strictly jammed lattice packings exist for ntri = 2. Each family
represents a continuous set of lattice packings sharing a com-
mon bond topology (Fig. 7). Since the families can be distin-
guished by their bond topologies, it is convenient to associate
them with distinct categories of planar tilings [31]. Moreover,
for each family i, these ASC results allowed us to identify
exact analytic expressions for the packing fraction φi (θ0).
Results are summarized in Table I. All families except for
7b and 10b [32] share two common features: (i) their φi (θ0)
are maximized at their “endpoint” θ0 (e.g., θ0 = 0 and 60◦
for family 1) and minimized at their respective θmin; (ii) they
reduce to the triangular lattice at at least one of the three
θ0 allowing for it (0, 60◦, and 120◦). Because the various
φi (θ0) vary continuously, feature (ii) means that the various
families’ densities converge to each other as θ0 approaches
these special values. Despite this convergence, the associated
lattices remain distinct and incommensurable. We expect that
this incommensurability strongly promotes jamming in bulk
systems.

Some of the nonmaximally dense families correspond to
familiar 2D lattice structures, e.g., family 5 is the square lattice
for θ0 = 90◦ and family 10a (10b) is the kagome lattice for
θ0 = 60◦ (θ0 = 0). Others represent less-familiar forms, such
as family 8 which possesses a very intriguing bond topology
consisting of five-sided polygons as well as the usual triangles
and parallelograms. The wide variety of mechanically stable
arrangements with different symmetries and bond topologies

FIG. 6. Analytic and ASC results for strictly jammed lattice
packings. Panel (a): Colored curves indicate the analytic φi (θ0)
(Table I) while black symbols indicate ntri = 2 ASC results. Panel
(b): ASC results for ntri = 4. Panel (c): A ntri = 4 strictly jammed
lattice formed by combining a family-1-type motif [the blue and
red (darker shaded) trimers] with a family-2-type motif [the orange
and cyan (lighter shaded) ones]; the black parallelogram indicates its
unit cell.

suggests that these systems’ equilibrium phase diagrams may
be especially rich [33], potentially including entropically
driven solid-solid transitions, various liquid-crystalline phases
(for example, θ0 = 90◦ and 120◦ systems might, respectively,
form thermodynamically stable bent-core tetratic and hexatic
liquid crystals), and KTHNY-style continuous melting transi-
tions [34,35].
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TABLE I. Families of strictly jammed lattice packings for ntri = 2, in order of decreasing minimal density φi (θmin). Families 1 and 2 are
respectively the maximally-symmetric maximally-dense lattice packings identified above [Figs. 2(a) and 2(b); Eqs. (2) and (4)] for 0 � θ0 �
60◦ and 60◦ � θ0 � 120◦. p and q are, respectively, equal to |30◦ − θ0| and 2 sin−1[(2

√
2 + 2 cos[θ0])−1]. The “tiling types” describe the

lattices’ bond topology for all θ0 within the range, but in general only precisely describe the lattices’ geometrical structure for specific θ0; for
example, type 5’s bond topology is always that of the square lattice but its geometry is only that of the square lattice for θ0 = 90◦. All families
except for 10(a) and 10(b) remain strictly jammed for ntri = 4; their ntri = 4 versions are simply two adjacent copies of the ntri = 2 lattices.

Family (i) Tiling type Range of θ0 θmin φi (θ0)/φtri

1 Half elongated triangular 0–60◦ 30◦ 3(2 + 2 sin[θ0 + 60◦]/
√

3)
−1

2 Elongated snub square 0–120◦ 30◦, 90◦ 2(1 + 2 sin[mod(θ0, 60◦) + 60◦]/
√

3)
−1

3 Rhombic triangular 0–60◦ 17.99◦, 42.01◦ 3
√

3(
√

3 + 2 sin(120◦ + 2p) + 2 sin(90◦ − p))
−1

4 Double elongated triangular 0–120◦ 30◦, 90◦ 3(1 + 4 sin [mod(θ0, 60◦) + 60◦]/
√

3)
−1

5 Square 60–120◦ 90◦ (
√

3/2) csc(θ0 )

6 Rhombic snub trihexagonal 0–60◦ 49.11◦ 3(2 + sin[150◦ − θ0] + sin[θ0 + 60◦]/
√

3)
−1

7a Birhombic snub trihexagonal 0–120◦ 43.90, 76.10◦ 6(3 + 2 cos[|θ0 − 60◦|] + 4 sin[60◦ + |θ0 − 60◦|]/√3)
−1

7b Birhombic snub trihexagonal 60–120◦ 103.90◦ 6(3 + 2 cos[|θ0 − 120◦|] + 4 sin[60◦ + |θ0 − 120◦|]/√3)
−1

8 Rhombic pentagonal 30–120◦ 74.39◦ 6
√

3(
√

3 + 4(sin[θ0] + (1 + cos[θ0]) sin[q] + sin[ θ0+60◦+q

2 ]))−1

9 Trirhombic snub trihexagonal 60–120◦ 79.11◦ 6(2 + cos[θ0] + 9 sin[θ0]/
√

3)
−1

10a Trihexagonal 0–120◦ 60◦ 3(2 − cos[|θ0 − 60◦| + 120◦] + √
3 sin[|θ0 − 60◦| + 120◦])

−1

10b Trihexagonal 0–60◦ 0 3(2 − cos[θ0 + 120◦] + √
3 sin[θ0 + 120◦])

−1

Figure 6(b) presents our ASC results for ntri = 4. The most
obvious difference from the ntri = 2 results is the elimination
of the lowest-φ strictly jammed packings; this occurs because
the larger basis allows for shear modes that destabilize the
kagome-like lattices (family 10). A second obvious difference
is that there are many additional families. Visual inspection
indicates that a large fraction of these are formed by com-
bining two of the families discussed above; one example is
shown in Fig. 6(c). There are very many such combinations,
making exhaustive cataloguing of them (as we did for ntri = 2)
prohibitively difficult, and continuing our ASC studies to even
larger ntri would, of course, exacerbate this issue. Instead we
will test the extent to which the ideas presented here are
useful by looking for local structural motifs within large-ntri

jammed configurations that correspond to the nonoptimally
dense families.

B. Dynamics: Disordered and partially ordered
jammed packings

None of the above discussion addresses the dynamics of the
jamming process. Since the dynamics of systems’ jamming
transitions naturally relate to the dynamics of their glass
transitions [36], we now examine the compression-rate depen-
dence of our model trimers’ athermal solidification behavior
using molecular dynamics (MD) simulations. Each of the ntri

simulated trimers contains three monomers of mass m. The
trimers are rigid; bond lengths and angles are held fixed by
holonomic constraints. Monomers on different trimers interact
via a harmonic potential UH (r ) = 10u0(1 − r/σ )2�(σ − r ),
where u0 is the energy scale of the pair interactions, σ is
monomer diameter, and � is the Heaviside step function.

Initial states are generated by placing the trimers ran-
domly within a square cell, with periodic boundary conditions
applied along both directions. Then Newton’s equations of

motion are integrated with a timestep δt = 0.005τ , where the
unit of time is τ =

√
mσ 2/u0. Systems are equilibrated at

kBT /u0 = 1 and φ = exp(−1)φtri until intertrimer structure
has converged, then cooled to T = 0 at a rate 10−4(u0/kB )/τ .
After cooling, systems are hydrostatically compressed at a
true strain rate ε̇, i.e., the cell side length L is varied as L =
L0 exp(−ε̇t ). To maintain near-zero temperature during com-
pression, we employ overdamped dynamics with the equation
of motion,

mr̈i = F − �ṙi + h({r, ṙ}), (8)

where ri is the position of monomer i, F is the force arising
from the harmonic pair interactions, the damping coefficient
� = 104ε̇, and the h({r, ṙ}) term enforces trimer rigidity [37].
All MD simulations are performed using LAMMPS [38].

Jamming is defined to occur when the nonkinetic part of
the pressure P exceeds Pthres = 10−4u0/σ

2; choosing a lower
(higher) value of Pthres lowers (raises) φJ (θ0), but does not
qualitatively change any of the results presented herein. We
choose to identify jamming with the emergence of a finite
bulk modulus rather than with the vanishing of soft modes be-
cause proper handling of soft modes associated with trimeric
“rattlers” [39] is highly nontrivial. In general, isotropic com-
pression protocols like those employed here produce states
that are at most collectively (i.e., are not strictly) jammed at
φ = φJ [40]. A protocol that enforced strict jamming would
presumably produce slightly denser, more-ordered marginally
jammed states, but we do not believe that these would be
qualitatively different than those described below.

Figure 8 shows results for the rate-dependent φJ (θ0). As
shown in panel (a), all systems jam at densities well below the
monomeric value φmon

J � 0.84 [39]. The reduced φJ relative
to monomeric systems are caused by trimers’ frozen-in two-
body and three-body constraints [8]. However, the trends
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FIG. 7. θ0 = θmin configurations and bond topologies of the
seven nonoptimally dense ntri = 2 lattice packings (families 3–9 in
Table I, Fig. 6) that remain stable for ntri = 4. The maximally dense
lattices (families 1 and 2) were illustrated in Figs. 2 and 3. Note that
it is the bond topologies that define the tiling types listed in Table I.

in φJ (θ0) are quite different than those observed for freely
rotating polymers (where φJ (θ0) is minimized at θ0 = 0 and
increases monotononically with increasing θ0 over the range
0 � θ0 � 90◦ [8]), further indicating the importance of long-
range chain connectivity (e.g., transmission of forces along
chain backbones) in controlling the latter systems’ jamming
phenomenology. For trimers, for all compression rates, values
of φJ (θ0) clearly follow trends in φmax(θ0), exhibiting maxima
at θ0 = 0, 60◦, and 120◦ and minima at θ0 � 30◦ and �90◦.
There are clearly two separate branches of φJ (θ0): one for

FIG. 8. Dynamical jamming. Panels (a) and (b) show φJ (θ0)
and the ratio φJ (θ0 )/φmax(θ0) for several strain rates, and panel
(c) shows shows φJ (θ0; ε̇) for several characteristic values of θ0.
The dotted gray line in panel (a) shows φmax(θ0 ). Dotted lines in
panel (c) indicate fits to Eq. (9). All results are averaged over nine
independently prepared ntri = 400 systems.

0 � θ0 � 60◦ and one for 60◦ � θ0 � 120◦. However, values
of φJ (θ0) do not simply track φmax(θ0). Specifically, closed
(θ0 = 120◦) trimers have a much higher φJ than their open
(θ0 = 0 or 60◦) counterparts even though their φmax are
identical. More generally, while the first branch of φJ (θ0)
is close to symmetric about θ0 = 30◦, the second branch
is clearly asymmetric; φJ (90◦ + ψ ) > φJ (90◦ − ψ ), increas-
ingly so as ψ increases from zero towards 30◦. While it is not
surprising that θ0 = 120◦ trimers are the best crystal-formers

042910-7



AUSTIN D. GRIFFITH AND ROBERT S. HOY PHYSICAL REVIEW E 98, 042910 (2018)

(cf. Fig. 9)—they are compact and threefold-symmetric,
whereas lower φJ are expected for small-θ0 systems owing to
their larger aspect ratios [1,8], our results show that this effect
propagates downward in θ0 as far as θ0 � 90◦.

A potentially useful metric for characterizing the strength
of the physical processes promoting disorder in these systems’
solid-state morphologies is f (θ0; ε̇) = φJ (θ0; ε̇)/φmax(θ0).
This quantity is unity when systems crystallize into their
maximal-density lattices during compression, and smaller
when systems jam at φ < φmax(θ0) due to the presence of
disorder. Roughly speaking, characterizing the decrease of
f (θ0; ε̇) with increasing ε̇ provides insight into the kinetics
of the solidification process, while characterizing its variation
with θ0 in the low-ε̇ limit provides insight into how the
strength of frustration- and degeneracy-related effects varies
with molecular shape. Panel (b) presents results for f (θ0; ε̇)
for all systems. For all strain rates considered here, trends in
f (θ0; ε̇) are opposite those in φJ (θ0; ε̇) and φmax(θ0). Minima
in the former correspond to maxima in the latter, e.g., maxima
in f occur at θ0 = 30◦ and 90◦. One potential reason for
this is that grains of crystals with incompatible local ordering
corresponding to the different families discussed above are
more likely to form at densities slightly below φJ (θ0) and then
jam as systems are further compressed for systems with lower
f (θ0; ε̇). We will examine this possibility further below.

Panel (c) illustrates the compression-rate dependence of
jamming in more detail for the θ0 corresponding to extrema
of φJ : 0, 30◦, 60◦, 90◦, and 120◦. For all systems, results
are well fit by

φJ (θ0; ε̇) � φ0
J (θ0) exp

[
−

(
ε̇

ε̇0

)γ ]
, (9)

where φ0
J is the quasistatic-limiting value of φJ , ε̇0 is a

characteristic rate, and γ describes the strength of the rate de-
pendence. While rigorously determining the exact functional
form of φJ (θ0; ε̇) would require more computational resources
than we currently possess and is beyond our present scope,
the fact that the best-fit values of ε̇0 and γ remain within
relatively narrow ranges for all 0 � θ0 � 120◦—respectively,
3 × 10−4 � ε̇0τ � 7 × 10−4 and 0.65 � γ � 0.85—suggests
that Eq. (9) is a useful approximate form for all θ0. Similar
compression-rate dependencies of φJ are found for dynamical
jamming of a wide variety of systems [41].

Next we turn to a qualitative characterization of how θ0 and
ε̇ affect jammed systems’ microstructure. Typical marginally
jammed packings for the five characteristic θ0 discussed above
are shown in Fig. 9. For θ0 = 0, 60◦, and 120◦, triangular-
crystalline grains are clearly visible. This is consistent with
the well-known result [28] that 2D systems of monodisperse
disks have a strong propensity to crystallize. Contrasting
the high-ε̇ and low-ε̇ snapshots for these θ0 suggests that
systems jam via a two-stage, two-length-scale process. First,
randomly oriented crystalline grains form and grow to a size
that depends on both θ0 and ε̇. Since these grains cannot be
compressed further, they effectively behave as single nearly-
rigid particles as compression continues. The degree to which
grains grow prior to jamming is kinetically limited and is a
key factor producing the rate dependence of φJ (θ0). Higher

FIG. 9. Jammed packings of ntri = 400 bent-core trimers gener-
ated by dynamic compression. Rows from top to bottom show typical
marginally jammed states for θ0 = 0, 30◦, 60◦, 90◦, and 120◦.
The left and right columns respectively indicate results for ε̇τ =
10−5.5 and 10−7. Colors indicate the distinct trimers 1,2, …,400.
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FIG. 10. Quantitative metrics of rate-dependent ordering during
dynamical compression. Panel (a) shows the intertrimer pair correla-
tion function ginter (r ) in marginally jammed states at φ = φJ (θ0; ε̇).
Panel (b) shows the hexagonal order parameter 〈�6(φ)〉 [Eq. (10)];
dashed vertical lines indicate the values of φJ (θ0 ) for ε̇τ = 10−7. In
both panels, solid curves indicate results for ε̇τ = 10−7 while dotted
curves indicate results for ε̇τ = 10−5.5. All results are averaged over
nine independently prepared ntri = 400 systems.

compression rates lead to smaller grain sizes and greater
intergrain misorientation, just as is the case in monomeric
systems [28,41].

The results for θ0 = 30◦ and 90◦ are less easy to interpret
since only basic features such as the decrease in the typi-
cal size of interstitials with decreasing ε̇ [28] are immedi-
ately apparent. The θ0 = 90◦ systems clearly possess some
grains with square-lattice ordering (see, e.g., the blue circle
in the ε̇τ = 10−7 snapshot), showing that the nonoptimally
dense families identified in Table I and Figs. 6 and 7 do
indeed play a role in these systems’ jamming phenomenol-
ogy. However, the clear crystallization kinetics observed for
θ0 = 0, 60◦, and 120◦ are absent here, perhaps because these
systems’ lower absolute φJ and φmax values make them appear
more disordered overall. The effects of degeneracy may also
be larger at these θ0. These issues might be resolved by going
to much lower ε̇, but doing so is not yet computationally
feasible.

Finally, we attempt to further elucidate the θ0-dependent
phenomenology of bent-core trimers’ crystallization ver-
sus jamming competition using more quantitative metrics.
Figure 10(a) shows the intertrimer contribution to the

monomeric pair correlation function, [ginter(r )], in marginally
jammed states for the five θ0 and two ε̇ considered in
Figs. 8 and 9. For all θ0, the peaks are considerably sharper
for ε̇τ = 10−7, reflecting the greater crystallinity obtained
when systems are compressed more slowly. Results for θ0 =
0, 60◦, and 120◦ show a prominent peak at r = √

3σ , con-
sistent with these systems’ tendency to form the triangular lat-
tice. The peak at r = √

2σ for θ0 = 30◦ and 90◦ is associated
with the square motifs these systems tend to form—recall that
squares of monomers are present in both their densest (Fig. 3)
and nonoptimally dense [Fig. 6(c)] lattice packings.

Figure 10(b) characterizes the onset of hexatic orienta-
tional ordering using the Steinhardt-like [42] order parameter:

�6 = 1

3ntri

3ntri∑
j=1

∣∣∣∣∣
1

6

6∑
k=1

exp(6iθjk )

∣∣∣∣∣. (10)

Here θjk is the angle between the vector �rjk connecting
monomers j and k and an arbitrary fixed axis; the inner sum
is taken over the 6 nearest neighbors of each monomer j .
�6 has been shown to be useful in identifying the onset of
liquid-crystalline order in hard-disk systems [34]; it is 1 for
the triangular lattice (at any density) and zero for a perfectly
orientationally disordered material. The data clearly illustrate
the very strong suppression of hexagonal order observed
above for θ0 = 30◦ and 90◦. More significantly, the results
for θ0 = 0, 60◦, and 120◦ show substantial increases in 〈�6〉
for φ < φJ (θ0) and therefore provide quantitative evidence
supporting our above claim that these systems tend to jam via
a two-stage process.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we examined the athermal solidification
behavior of 2D bent-core tangent-disk trimers. We found that
trends in φJ (θ0) closely follow those in φmax(θ0), but with
additional effects related to symmetry and degeneracy super-
posed. We reported two distinct regimes of packing and jam-
ming phenomenology, identifying the source of the difference
between them as the ability (inability) of a reference trimer
to form a bond-triangle on its concave side with a monomer
belonging to a second trimer when θ0 < 60◦ (θ0 > 60◦). Well-
packed systems with θ0 > 60◦ are generally less dense and
less hyperstatic than their θ0 < 60◦ counterparts. Another key
insight was that deviations of θ0 away from the values allow-
ing formation of the triangular lattice (0◦, 60◦, and 120◦)
do not by themselves frustrate crystalline order. Instead,
crystals belonging to several families distinguished by their
differing bond topologies can form. We believe that it is
the presence of these competing families combined with the
extensive degeneracy of the densest lattices that frustrates
crystallization and promotes jamming in these systems. Our
work complements recent studies of the thermal solidification
of Lewis-Wahnstrom-like models [43,44], which illustrated
several nontrivial effects of trimeric structure (e.g., that its
enhancement of the interfacial energy between crystalline and
liquid phases promotes glass-formation) but did not attempt
to connect their findings to the models’ optimal-packing or
jamming-related phenomenology.
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One of the principal goals of soft materials science
is designing materials that possess tunable solid morphol-
ogy. Designing custom pair interactions that yield nontri-
angular 2D-crystalline or non-close-packed 3D-crystalline
ground states has attracted significant interest in recent years
[45–47]. Our 2D bent-core tangent-disk trimers provide a sim-
ple example of how the same goal may be achieved with hard-
disk or hard-sphere pair interactions by controlling two-body
and three-body correlations, i.e., by imposing covalent bond-
ing and controlling the bond angle θ0. The potential relevance
to real systems is that controlling the bond angle (or anal-
ogous shape parameters) of small molecules [13–16,19–22]
is often easier than controlling the pair interactions of their
constituent atoms.

Another key tuning parameter for soft materials is their de-
gree of (dis)order. Recent work [15,16] has shown that the best
glass-formers (crystal-formers) in homologous series of small
molecules are those with the highest (lowest) ratio Tg/Tm.

One might naively guess that an athermal version of this
principle applicable to bent-core trimer molecules is that the
best glass-formers (crystal-formers) are those with the low-
est (highest) ratio φJ (θ0)/φmax(θ0). However, the dynamic-
compression results we presented here suggest that this is not
the case. Moreover, the multiplicity of nonoptimally-dense-
but-strictly-jammed lattice packings these systems can form
suggests that they may possess multiple thermodynamically
stable crystalline phases and/or nontrivial liquid-crystalline
phases [12]. We conclude that further characterizing these
systems’ equilibrium phase behavior, e.g., by accurately
determining their φmelt(θ0) using techniques like those of
Refs. [34,35], is necessary to flesh out this issue.
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