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Critical-like slowdown in thermal soft-sphere glasses via energy minimization
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Using hybrid molecular dynamics/SWAP Monte Carlo (MD/SMC) simulations, we show that while the
terminal relaxation times τ (φ) for FIRE energy minimization of soft-sphere glasses can decrease by orders
of magnitude as sample equilibration proceeds and the jamming density φJ increases, they always scale as
τ (φ) ∼ (φJ − φ)−2 ∼ [Ziso − Zms(τ )]−2, where Ziso = 2d and Zms(τ ) is the average coordination number of
particles satisfying a minimal local mechanical stability criterion (Z � d + 1) at the top of the final potential-
energy-landscape (PEL) sub-basin the system encounters. This scaling allows us to collapse τ datasets that look
very different when plotted as a function of φ, and to address a closely related question: how does the character
of the PEL basins that dense thermal glasses most typically occupy evolve as the glasses age at constant φ

and T ?
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Jamming exhibits many features that are reminiscent of
critical phenomena [1]. Since multiple length and time scales
exhibit power-law divergences as φJ is approached from below
[2–5], so do their associated mechanical quantities. For exam-
ple, the shear viscosity of colloidal suspensions (η), which is
often assumed to be linearly proportional to their character-
istic stress-relaxation time τvisc, scales as η ∼ |�φ|−β , where
�φ = φ − φJ is the excess packing fraction, and 1.6 � β � 4
[6–13]. Correspondingly, recent simulations have shown that
the characteristic relaxation times (τ ∗) for energy minimiza-
tion and shear-stress relaxation in athermal hard and soft
sphere glasses scale as τ ∗ ∼ |�Z|−ν , where �Z = Z − Ziso ≡
Z − 2d is the excess coordination number, and 1.6 � ν � 3.7
[14–21]. These divergences can be understood in terms of the
relation τ ∗ ∼ ω−2

min, where ωmin is the frequency of systems’
lowest-energy vibrational mode [16,17]. Such modes increas-
ingly dominate systems’ relaxation dynamics as φ → φJ from
below and ωmin → 0 [16–20,22]. Assuming that they control
η for densities just below jamming, and employing the rela-
tion �Z ∼ �φ, allows the abovementioned scaling relation
to be re-expressed as η ∼ τ ∗ ∼ |�Z|−ν , if in fact β = ν as
suggested by Refs. [14–20].

A recent study [21] has challenged some of the main
conclusions of Refs. [16–20], and in particular their asser-
tions that (i) the divergence of τ ∗ represents a true critical
phenomenon with a well-defined value of ν, and (ii) ather-
mal glasses’ τvisc and η are both controlled by τ ∗. On the
other hand, the critical-like slowdown of athermal soft-sphere
glasses’ energy-minimization and shear-stress-relaxation dy-
namics as φ → φJ and Z → Ziso from below is now well
established. The extent to which these phenomena affect
thermal glasses’ relaxation dynamics, and hence are subject to
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“onset” effects, however, has not been explored. Thermalized
3D hard-sphere liquids equilibrated at packing fractions φeq

below the onset density φon � 0.45 always have the same
jamming density φJ = φRCP � 0.64 [23], while those equi-
librated at φeq > φon have φJ that increase with increasing
φeq, or, for fixed φeq, with increasing equilibration time teq

[23–26]. Similarly, soft-sphere liquids equilibrated at fixed
φ and temperatures T above the onset temperature Ton(φ)
always have the same average inherent structure energy (EIS),
while those equilibrated at temperatures T < Ton have EIS

that decrease with decreasing T and increasing teq [27,28].
Because Refs. [6–21] all examined systems where φJ � φRCP,
a natural followup question is: how are the divergences of time
scales like τ ∗ affected by sample preparation/thermal onset,
i.e., by the abovementioned increasing φJ(teq ) and decreasing
Ton(φ, teq )?

In this Letter, using MD/SMC simulations combined with
FIRE energy minimization [29–32], we shed light on this
question. By starting with far-from-equilibrium soft-sphere
glasses obtained via infinite-temperature quenches (with a
wide range of φ) and then bringing them toward equilib-
rium using SWAP, we show that the times τ required for
thermal soft-sphere glasses to enter their final unjammed
potential-energy-landscape (PEL) sub-basin during energy
minimization exhibit thermal onset as samples become in-
creasingly well equilibrated, in the same fashion that φJ(teq )
does. Although τ (φ, teq ) can decrease by orders of magnitude
as equilibration proceeds and φJ(teq ) increases via thermal on-
set, it always scales as τ (φ, teq ) ∼ [φJ(teq ) − φ]−2 ∼ �Z−2,
where �Z ≡ Ziso − Zms[τ (φ, teq )], for sufficiently small �φ

and �Z . This common scaling allows us to collapse τ datasets
that look very different when plotted as a function of φ and
teq, and thus to greatly simplify our understanding of dense
thermal soft-sphere glasses’ strongly φ- and teq-dependent
energy-minimization dynamics by showing that they are
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always controlled by the lowest-lying structure of systems’
PELs.

All simulations were performed using hdMD [33]. Sys-
tems are initialized by placing N = 105 soft-sphere particles
randomly within periodic 3D cubic simulation cells, with a
wide range of packing fractions (0.63 � φ � 0.68). These
particles are continuously polydisperse, with a size distribu-
tion that produces excellent glass-formability for a variety of
pair potentials [30,34,37]. Infinite-temperature quenches are
performed [1], and then systems are equilibrated at a constant
temperature kBTeq = ε̃ using the SWAP algorithm [29,30],
for times teq up to 105τ̃ . Our implementation attempts N/10
particle-diameter swaps per τ̃ . Here τ̃ =

√
m̃σ̃ 2/ε̃ is the unit

of time and m̃, σ̃ , and ε̃ are, respectively, the units of mass,
length, and energy; below, we will express all quantities in
terms of these units. For most φ examined here, this proce-
dure produces weakly-to-moderately aged glasses (i.e., not
equilibrated supercooled liquids), consistent with our goal of
studying nonequlibrium phenomena that occur deep in the
glassy state.

At selected values of teq, we minimize systems’ energies
using the FIRE [31,32] algorithm. During these minimiza-
tions, we monitor changes in the average pair energy per
particle Ep = N−1 ∑

j>i U (ri j ) as well as Z and Zms, which
are, respectively, the average coordination numbers for all
particles and for all particles i that satisfy a minimal, local me-
chanical stability criterion Zi ≡ ∑

j �=i �(σi j − ri j ) � d + 1
[38,39]. Here ri j is the distance between particles i and j, σi j

is their reduced interparticle diameter [34], � is the Heaviside
step function, and interparticle contacts are identified using
the standard criterion ri j < σi j [1]. Below, we plot these quan-
tities as a function of the elapsed minimization time

t =
I∑

i=0

δti (1)

after I FIRE iterations, where δti is the adaptive timestep
during the ith iteration [32]. Energy minimization continues
until Ep reaches zero, Ep has not changed over the past ten it-
erations, or I reaches 105 [34]. Since FIRE dynamics are only
partially physical (in contrast to steepest-descent dynamics,
which correspond to the limit of infinite damping [34,40,41]),
we will not assign any physical significance to absolute values
of t ; below, we will only make relative statements.

We begin by discussing the φ and t dependence of Ep,
Z , and Zms for one representative teq value (6 × 104). Fig-
ure 1(a) shows Ep(t ) data for systems with .655 � φ �
.675, in increments δφ = .0005. During the initial stages
of energy minimization, all systems have Ep(t ) ∼ t−1 [19].
In jammed systems, ∂Ep/∂t increases monotonically with
t , and Ep converges faster as φ increases, consistent with
previous studies [42–45]. For unjammed systems, the re-
sponse is qualitatively different. The initial Ep(t ) ∼ t−1

regimes end at times tdrop(φ). Over a wide range of φ and
t > tdrop(φ), Ep(t ) ∼ exp[−t/τ ∗(φ)], where (consistent with
previous studies [16–20]) τ ∗ ∼ (φJ − φ)−2 as φ → φJ from
below [34]. However, Ep does not smoothly drop all the way to
zero as might be expected. Instead, the exponentially decaying
portions of the Ep(t ) curves end at finite Ep, exhibiting kinks
at times τ (φ) that increase rapidly with φ. During the final

FIG. 1. Structural metrics during FIRE energy minimization of
3D thermal soft-sphere glasses equilibrated for teq = 6 × 104. This
system has φJ(teq ) = 0.6726 [from Eq. (2)]; black curves indicate
results for the lowest φ � φJ.

stages of minimization, Ep drops toward zero in a roughly
power-law fashion. Overall, the Ep(t ) dataset suggests that the
kinks for φ < φJ correspond to systems entering their final
PEL sub-basin.

This hypothesis is strongly supported by examining the
coordination number Z (t ). As shown in Fig. 1(b), the Z (t ) ex-
hibit a common behavior for small t , first decreasing and then
increasing as the elimination of strong interparticle overlaps
brings more particles into contact with each other. For φ � φJ,
these increases persist to t → ∞ as is typical of jammed
systems [1]. For φ < φJ, however, they terminate at the same
finite τ (φ) shown in panel (a). For t > τ (φ), the Z (t ) [much
like the Ep(t )] drop slowly toward zero. At intermediate times,
Z (t ) oscillates. The local minima in Z (t ) coincide with the
FIRE algorithm resetting when the system encounters a saddle
point and the dot product of the N-particle force and velocity
vectors ( 	F · 	v) for a prospective set of particle positions {r}
becomes negative [31]. After these resetting events, Z tends
to first increase as a few larger interparticle overlaps get con-
verted into many smaller ones, then decrease again as these
small overlaps are eliminated. Since this occurs when the sys-
tem traverses a region in which the direction of 	F is changing
substantially from one iteration to the next, the oscillations
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cease once it has entered its final PEL sub-basin [at t = τ (φ)].
Figure 1(c) shows that the character of these oscillations is
not changed by removing particles with Zi < d + 1 [34,38].
Note, however, that for both Z (t ) and Zms(t ) their amplitude
decreases and their frequency increases as φ → φJ.

We find that τ is always linearly proportional to (albeit
substantially larger than [34]) τ ∗, indicating that the re-
sults reported above are closely related to those discussed in
Refs. [16–20]. Since these studies employed either normal
MD time integration (in simulations of shear stress relaxation)
or gradient-descent rather than FIRE energy minimization,
they were unable to observe the kinks in Ep(t ) and oscilla-
tions in Z (t ) and Zms(t ) discussed above, or to measure an
exact analog to the terminal relaxation time τ . As we will
demonstrate below, the utility of the above discussion is that it
allows us to convincingly argue that �Z (τ ) ≡ Ziso − Zms(τ ),
i.e., minimally-locally-stable particles’ average hypostaticity
at the top of the final sub-basin the system encounters, is
a well-defined quantity that can be used to describe these
systems’ energy-minimization dynamics.

Our main contribution centers around the fact that the only
substantial changes in the phenomona illustrated in Fig. 1 as
teq increases are that they shift to higher φ, following the
increase in φJ(teq ) as thermal onset proceeds. We observe
exponential decay of Ep terminating in kinks at t = τ (φ, teq ),
oscillations in Z and Zms, and divergences in τ ∼ τ ∗ as
φ → φJ(teq ) from below, for all values of teq [34]. Results
for τ (φ, teq ) for a wide range of φ and teq are summarized
in Fig. 2. Panel (a) shows how the jamming densities φJ(teq)
obtained by fitting the finite [φ < φJ(teq )] τ values to the
empirical formula

τ (φ, teq ) = A(teq ) + B(teq )

[φJ(teq ) − φ]2
(2)

increase via thermal onset; φJ(teq ) increases roughly loga-
rithmically with teq, from ∼0.648 to ∼0.674 over the range
101 � teq � 105. Comparable increases in φJ(teq ) have been
reported before—they arise from relatively well understood
thermal onset effects [24–28]—but the concomitant shift of
the ranges of φ < φJ(teq ) over which relaxation times for
energy minimization diverge has been reported on very little
(if at all).

Panel (b) illustrates a closely associated effect. When
φJ(teq ) < φ, τ values are effectively infinite since systems
never unjam. As thermal onset proceeds, τ values become
finite (but large) as soon as φJ(teq ) exceeds φ, then drop by
∼2 orders of magnitude as systems approach equilibrium.
Below, we will interpret this result in terms of how ther-
mal soft-sphere glasses’ most-typically-occupied PEL basins
evolve during constant-φ aging, and suggest how it might be
experimentally characterized.

Panel (c) shows that τ diverges with increasing Zms(τ )
approximately as

τ (φ, teq ) = C + D

(Ziso − Zms[τ (φ, teq )])2
, (3)

where C and D are teq-independent constants. The common
inverse-quadratic form of the diverging time scales illus-
trated in panels (a) and (c) arises rather trivially since Zms(τ )

FIG. 2. Effect of thermal onset on soft-sphere glasses’ energy-
minimization dynamics. Panels (a) and (c), respectively, show τ

vs φ and Zms(τ ) for selected teq, while panel (b) shows τ vs teq

for selected φ. Solid curves in panel (a) show fits to Eq. (2) for
teq = 101, 102, 103, 104, and 105. In panel (c), the color legend is the
same as in panel (a), the solid curve shows a single fit of the entire
dataset to Eq. (3) with C = 1.55 and D = 4.86, and the inset shows
the same data plotted vs �Z , with a line indicating �Z−2 scaling.

increases linearly with φ over the range of packing fractions
for which Eqs. (2) and (3) describe the data.

We emphasize that [owing to the concerns raised in
Ref. [21] and the upturns in τ at small �Z that are visible
in Fig. 2(c)] we are not asserting that the above results imply
a true critical phenomenon with ν = 2. Employing a different
energy-minimization algorithm can change the values of both
τ and ν [34,40,41], and our goal for this study is not to formu-
late an exact physics picture for τ (φ, teq ). On the other hand,
the results presented in panel (c) [unlike those of panel (a)]
unambiguously show that (i) plotting the terminal relaxation
times for thermal glasses’ energy minimization as a function
of the Zms values at those times allows one to collapse results
that look very different when plotted as a function of φ, and
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FIG. 3. Schematic illustration of how the PEL regions most typ-
ically sampled by thermal soft-sphere glasses evolve as they age at
constant φ and T following a thermal quench. Unjammed regions of
the PEL are gray-colored.

(ii) these times always diverge when systems are isostatic at
the top of the final PEL sub-basin they encounter.

Results (i) and (ii) allow us to formulate a simplified
picture of these systems’ strongly φ- and teq-dependent
energy-minimization dynamics. The data shown in Fig. 2(a)
would paint a very confusing picture if the color coding were
removed, or if one attempted to compare results for systems
that had been prepared using different equilibration protocols.
In contrast, Fig. 2(c) is much easier to understand. It shows
that the terminal relaxation times for energy minimization
in thermalized soft-sphere glasses are always controlled by
the lowest-lying structure of systems’ PELs. This structure
can evolve dramatically with equilibration or “waiting” time
owing to thermal onset, but the collapse illustrated in Fig. 2(c)
shows that the effects of this evolution on τ (φ, teq ) can be
understood almost trivially. This is the central result of our
study. Our demonstration that Zms[τ (φ, teq )] rather than φ is
the relevant control variable for thermal soft-sphere glasses’
energy-minimization dynamics might also serve as the basis
for a critical-phenomena-based theory for these dynamics,
formulated along the lines of Refs. [46,47].

All trends reported above indicate that systems spend a
diverging amount of time near the boundaries between sub-
basins that have large Z but very small Ep, and that they
encounter more and more of these boundaries as φ → φJ(teq )
from below. This is consistent with the Gardner-like-physics
prediction of a proliferation of sub-basins with very small but

nonzero energy [48,49], and with recent studies suggesting
that glasses subjected to thermal quenches spend a diverging
amount of time (as φ → φJ from below) traversing saddle
points as they explore their PELs and gradually fall into ever-
lower sub-basins before finally unjamming [42–45,50,51].
The proliferation of kinks, since they correspond to changes
of direction of 	F and 	v, agrees with Ref. [52]’s demonstra-
tion that systems near jamming follow fractal paths through
configuration space during FIRE energy minimization.

Taken together, our results suggest the following four-stage
picture (schematically illustrated in Fig. 3) for how the charac-
ter of the PEL basins that simulated dense thermal soft-sphere
glasses most typically occupy evolves as they are equilibrated
at constant φ and T following a thermal quench: (i) When
teq is small and φJ (teq ) remains well below φ, systems are
typically in a smooth portion of their PEL and can quickly
find the bottom of a nearby jammed basin; (ii) As φJ(teq ) ap-
proaches φ from below, systems cross into rougher portions of
their PELs that have more “wrinkles” (basin boundaries), and
hence take longer to find the bottom of a jammed basin; (iii)
As φJ(teq ) increases past φ, unjammed basins emerge, but to
reach them, systems must traverse very rough regions of their
PELs characterized by a proliferation of basins with fractal
boundaries [49,52]; and (iv) Finally, as teq → ∞ and φJ(teq )
grows further beyond φ, systems cross back into progressively
smoother portions of their PELs where they can more quickly
find the bottom of a nearby unjammed basin.

Numerous studies have shown that both athermal and
quenched glasses go through this process as φ decreases from
well above to well below φRCP [20,43,44,49,53,54]. Here we
have argued that it should also occur in sufficiently-dense ther-
mal glasses maintained at fixed φ and T , as their thermalized
pair energy Ep(teq ) and pressure P(teq ) slowly decrease via
aging [55,56]. Since the transition from stage (ii) to stage
(iii) is associated with both diverging length scales [2,16,21]
and diverging time scales such as τ ∗, τ , and ω−1

min, it should
have multiple signatures whose observation does not require
energy minimization. For example, it should also produce a
nonmonotonic evolution of systems’ low-energy vibrational
spectra that should be easily observable in simulations [57,58]
and potentially observable in experiments [59–61]. Finally we
point out that stage (iv) can be interpreted as an extension
of the well-known reduction of EIS(φ) with increasing teq

[27,28]. While EIS(φ, teq ) = 0 for all systems that ultimately
unjam, i.e.. for all teq > tunjam(φ), thermal onset continues
even for teq > tunjam(φ), in the sense that systems continue
moving into progressively-smoother regions of their PELs
where the unjammed basins are both larger and more easily
accessible.

We thank P. Charbonneau for helpful discussions. This
material is based upon work supported by the National Sci-
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