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Homogeneous crystallization in four-dimensional Lennard-Jones liquids
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We observe homogeneous crystallization in simulated high-dimensional (d > 3) liquids that follow physically
realistic dynamics and have system sizes that are large enough to eliminate the possibility that crystallization was
induced by the periodic boundary conditions. Supercooled four-dimensional (4D) Lennard-Jones (LJ) liquids
maintained at zero pressure and constant temperatures 0.59 < T < 0.63 crystallized within ∼2 × 104τ , where
τ is the LJ time unit. Weeks-Chandler-Andersen (WCA) liquids that were maintained at the same densities and
temperatures at which their LJ counterparts nucleated did not crystallize even after 2.5 × 105τ , showing that the
presence of long-ranged attractive interactions dramatically speeds up 4D crystallization, much as it does in 3D.
On the other hand, the overlap of the liquid and crystalline phases’ local-bond-order distributions is smaller for
LJ systems than for WCA systems, which is the opposite of the 3D trend. This implies that the widely accepted
hypothesis that increasing geometrical frustration rapidly suppresses crystallization as the spatial dimension d
increases is only generally valid in the absence of attractive interparticle forces.
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I. INTRODUCTION

In three-dimensional liquids composed of monodisperse
particles lacking strongly directional interactions, local struc-
tural ordering at the atomic scale is typically approximately
icosahedral [1]. Icosahedra, which are composed of a central
atom surrounded by 12 atoms that form a locally fivefold-
symmetric shell, are the lowest-energy 13-atom structures
for a wide range of pair potentials [2]; they are com-
posed of 20 distinct tetrahedra, which are the lowest-energy
4-atom structures. Both tetrahedra and icosahedra, however,
are incompatible with these potentials’ lowest-energy global
structures, i.e., with the fcc and hcp crystal lattices. Such
incompatibility between the lowest-energy local structures
and the lowest-energy global structures is known as “geo-
metrical frustration” and is one of the best-known reasons
for glass formation [3]. It makes the free energy barriers for
rearrangements from locally into globally preferred structures
large, increases atoms’ tendency to stay in the former under
rapid cooling or compression, and promotes the formation
of locally polytetrahedral amorphous order at the expense of
close-packed crystalline order in a wide variety of 3D glassy
and jammed solids [4].

Three-dimensional systems are, however, somewhat un-
usual in this respect. In two dimensions, the lowest-energy
7-atom clusters (for the same pair potentials that give icosa-
hedra in 3D) are hexagons composed of 6 triangles, which
are the lowest-energy 3-atom structures. Since these structures
are both compatible with the triangular lattice, monodisperse
2D soft-sphere and hard-sphere liquids readily crystallize
[5] under a wide range of preparation protocols [7–10]. In
four dimensions, the lowest-energy/most-compact 25-atom
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clusters are composed of 24 octahedral cells, which are the
lowest-energy/most-compact 8-atom structures. Both of these
structures are compatible with the D4 lattice, which is the
densest 4D sphere packing [11]. Thus it was surprising to
find that crystallization of 4D hard-sphere liquids is strongly
suppressed. In the first study of these liquids’ solidification
dynamics [12], crystallization occurred in a very slowly com-
pressed, very small (648-atom) system, but none was observed
in a 10 000-atom system, suggesting that the 648-atom result
may have been a finite-size artifact arising from the peri-
odic boundary conditions [13]. More recent studies of larger
systems also failed to observe homogeneous crystallization
[14–22].

van Meel et al. explained this failure in terms of a less-
obvious kind of geometrical frustration, namely, that the
actual local ordering in equilibrated 4D hard-sphere liquids
is very different than that of the abovementioned 25-atom
clusters [14,15]. More specifically, the overlap O of the
probability distributions for local bond order (q6 [23]) in
the metastable supercooled liquid and equilibrium crystalline
states,

O =
∫ 1

0
Pliquid(q6)Pcryst (q6)dq6, (1)

is far smaller in 4D than it is in 3D, and consequently the
free energy barriers to crystal nucleation (and specifically,
the interfacial free energy) are much higher. This type of en-
tropically driven frustration gets more dramatic as the spatial
dimension d increases [15], consistent with the now-widely-
accepted notion that crystallization rapidly gets harder with
increasing d [12]. Its presence can explain why crystalliza-
tion is suppressed in high d despite the fact that systems’
equilibrium freezing densities remain well below their glass
transition densities [19,20].
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On the other hand, there are reasons to question whether
results for hard-sphere liquids can be generalized to other
systems. While the structure of liquids at the level of the
pair correlation function g(r) is determined almost completely
by the repulsive-core part of the interatomic interactions (for
systems maintained at fixed density ρ and temperature T
[24]), longer-ranged attractive forces can exert a substantial
influence on higher-order structural metrics that influence
crystallization propensity [25]. Toxvaerd recently showed [26]
that increasing the potential cutoff radius rc in 3D Lennard-
Jones (LJ) liquids from its Weeks-Chandler-Andersen value
(rWCA

c = 21/6σ , where σ is the LJ length unit) to 3.5σ (a
value that produces attractive forces for particles in atoms’
first, second, and third coordination shells) increased both
their O values and their nucleation rates by at least 1 order
of magnitude. This result leads naturally to the question: is
the same combination of trends also present in higher d?

Higher-d liquids are, of course, not experimentally real-
izable, but studying them can reveal which factors are most
important in controlling the physics of realizable (d � 3) sys-
tems, especially for phenomena (e.g., solidification) that are
markedly different in 2D vs 3D [27]. However, to the best
of our knowledge, only three previously published particle-
based simulation studies of d > 3 liquids have included
attractive interactions [28–30], and none of these examined
systems that could be expected to crystallize. Here, using
large-scale molecular dynamics simulations of 4D WCA and
Lennard-Jones liquids, we show that the answer to the above
question is, surprisingly, no. LJ liquids reproducibly nucleate
and form high-quality D4 crystals over times as small as
∼104τ , at densities and temperatures for which WCA liquids
do not crystallize on any currently computationally-feasible
time scale. This difference occurs despite the fact that the
LJ systems have O values that are slightly lower than their
WCA counterparts. Our results imply that the widely accepted
hypothesis that increasing geometrical frustration rapidly sup-
presses crystallization as the spatial dimension d increases is
only generally valid in the absence of attractive interparticle
forces.

II. METHODS

All simulations were performed using hdMD [31]. Sys-
tems are composed of N = 5 × 105 particles of mass m,
interacting via the truncated and shifted Lennard-Jones po-
tential ULJ(r) = 4ε[(σ/r)12 − (σ/r)6 − (σ/rc)12 + (σ/rc)6],
where ε is the interparticle binding energy and rc is the
cutoff radius. Newton’s equations of motion are integrated
with a time step of dt = τ/125, where τ =

√
mσ 2/ε is

the LJ time unit. Periodic boundary conditions are applied
along all four directions of hypercubic simulation cells. Af-
ter initially placing the particles randomly within the cells
and minimizing their energy to reduce interparticle overlap,
short NVT-ensemble equilibration runs are performed. For
the LJ (rc = rLJ

c ≡ 2.5σ ) systems, these are followed by long
NPT-ensemble runs of lengths up to 105τ , where pressure
is maintained at zero and temperature is held constant us-
ing a Berendsen thermostat/barostat [32]. In the later stages
of our study, we also performed NVT simulations of WCA
(rc = rWCA

c ≡ 21/6σ ) liquids and both LJ and WCA D4 single

crystals; these are described further in Sec. III. Below, we
express all quantities in dimensionless (LJ) units.

In addition to standard thermodynamic metrics such as the
average pair interaction energy per particle Epair, the particle
number density ρ, and the pair correlation function g(r), we
monitor two structural order parameters that have been shown
to effectively characterize the types of 4D crystallization we
might expect to encounter [14,15]: specifically, the second-
order two-particle bond-order correlators q4(i, j) and q6(i, j),
where

ql (i, j) = 1

N (i)N ( j)

N (i)∑
α=1

N ( j)∑
β=1

G1
l (r̂iα · r̂ jβ ). (2)

Here G1
l are Gegenbauer polynomials defined by [33]

G1
l (x) =

l/2∑
k=0

(−1)k (l − k)!(2x)l−2k

k!(l − 2k)!
. (3)

We calculate q4(i, j) and q6(i, j) for all neighboring par-
ticles i and j that lie within each other’s first coordination
shells as defined by the first minimum of g(r), i.e., all particle
pairs (i, j) whose distance ri j = |�r j − �ri| < 1.4. The sums in
Eq. (2) are performed over the N (i) neighbors of particle
i and N ( j) neighbors of particle j satisfying riα, r jβ < 1.4.
These rotationally invariant correlators are defined so that
q4(i, j) = 1 [q6(i, j) = 1] in perfect A4 [D4] lattices [11] and
both |ql (i, j)| � 1 in a liquid; see Ref. [15] for a detailed
discussion. We also monitor the per-particle quantities q̃l (i)
defined by averaging these ql (i, j) over all neighbors of parti-
cle i:

q̃l (i) = 1

N (i)

N (i)∑
j=1

ql (i, j). (4)

Recent work has demonstrated that even for single-
component systems with central-force interactions, crystal-
lization typically involves nontrivially correlated fluctuations
of at least two order parameters (OPs) associated with trans-
lational and rotational symmetry breaking, and that properly
understanding crystallization requires examining both types
of OPs [34,35]. In particular, fluctuations in local density and
local orientational order both tend to trigger nucleation, but
which type of fluctuation is more likely to do so is system
dependent [36,37]. Thus, we also monitor the local packing
fraction

φloc(i) = Vpis(i)

Vis
, (5)

where Vis = π2(rLJ
c )4/32 is the volume of a hyperspherical

shell of radius rLJ
c , and Vpis(i) is the total particle volume

lying within the shell centered on particle i. We calculated
Vpis(i) accurately using Li’s method for determining the in-
tersection volume of two overlapping hyperspheres [38]. For
the purposes of this calculation, particles were treated as
hyperspheres of diameter 21/6, i.e., of diameter equal to the
interparticle distance at which both LJ and WCA forces
vanish.
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FIG. 1. Average packing fraction φ ≡ ρVis, average pair en-
ergy Epair , and average two-particle bond-order correlators 〈q6(i, j)〉
and 〈q4(i, j)〉 in supercooled 4D Lennard-Jones liquids maintained
at zero pressure and the temperatures indicated in the legend of
panel (a).

III. RESULTS

Figure 1 illustrates the evolution of four structural metrics
at eight different temperatures over the range 0.5625 � T �
0.650. In all systems with 0.600 � T � 0.625, Epair drops
sharply while φ and 〈q6(i, j)〉 increase sharply at various
t < 2 × 104; here t is the time elapsed since the beginning
of the NPT runs, and the average is taken over all (i, j) ∈
[1, N]. The combination of high final 〈q6(i, j)〉 values with
low final 〈q4(i, j)〉 values indicates that these systems have
crystallized into the D4 rather than the competing (A4) crystal
structure [15].

In systems with lower and higher T , no such rapid
changes in any of these quantities occur. Since fast crystal-
lization of large systems requires both rapid nucleation and
rapid growth, we expect that 0.59 � T � 0.63 is, roughly

FIG. 2. Fluctuations in the per-particle bond-order correlator
q̃6(i) and the local packing fraction φloc(i) in supercooled 4D
Lennard-Jones liquids maintained at zero pressure and the temper-
atures indicated in the legend of panel (a).

speaking, the range where both nucleation and growth rates
are large (see, e.g., Fig. 3 of Ref. [39]). The apparent absence
of crystallization for T < 0.6 is probably an artifact of the
finite observation window (
t = 105), but it seems unlikely
that it results from these liquids failing to equilibrate; note
that the rms particle displacements over this window were at
least four particle diameters even for the lowest T = 0.5625.

The first-order-transition-like jumps in φ and 〈q6(i, j)〉
for 0.600 � T � 0.625 are accompanied by massive local
fluctuations in the corresponding single-particle quantities.
Figure 2 shows that 
q̃6 = [〈q̃6(i)2〉 − 〈q̃6(i)〉2]1/2 and

φloc = [〈φloc(i)2〉 − 〈φloc(i)〉2]1/2 exhibit sharp maxima co-
inciding with these jumps. Both quantities increase by roughly
an order of magnitude for a very short time interval (<102

LJ time units) before rapidly dropping back to intermedi-
ate values and then finally slowly decreasing for larger t .
It is unclear whether 
q̃6 or 
φloc is maximized first, rais-
ing a question that has been recently investigated for 3D
liquids [35,37,40]: do orientational-order fluctuations trigger
positional-order (i.e., density) fluctuations or vice versa? We
examine this question in more detail below.

Next we examine how the distributions of positional and
orientational order evolve. Results for a single representa-
tive temperature (T = 0.625) are shown in Fig. 3. Panel
(a) focuses on the pair correlation function g(r). At t =
1.40 × 104 and 1.43 × 104, g(r) takes a typical liquid-state
form. At t = 1.44 × 104, the system is evidently in an in-
termediate state containing (unstably) coexisting liquid and
crystalline regions. At t = 1.45 × 104 and all later times,
e.g., t = 5.00 × 104 as shown in the plot, the system has
solidified into a high-quality crystal. We verified that it is, in
fact, a D4 crystal by checking that the coordination number
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FIG. 3. Evolution of local structural order in Lennard-Jones sys-
tems at T = 0.625 and P = 0. Panels (a)–(c) respectively show
the pair correlation functions g(r), the probability distributions
P[q6(i, j)], and the probability distributions P[φloc(i)] at selected
times.

Z = ∫ 1.4
0 2π2ρr3g(r)dr [the 4D analogue of the familiar 3D

formula Z = ∫ 1.4
0 4πρr2g(r)dr] is close to 24; indeed, Z 	

23.81 at t = 1.45 × 104 and thereafter continues increasing
slowly with t .

As expected from the decorrelation principle [12,41], the
secondary and tertiary peaks of the liquid-state g(r) are
slightly less sharp than in a comparable metastable 3D liq-
uid [26]. On the other hand, as expected from previous
studies of four-, five-, and six-dimensional hard-sphere sys-
tems [21,42], the coordination shells of the D4 crystal are
much more sharply defined those of the corresponding 3D
crystal. For example, if rmax and rmin correspond to the
first maximum and minimum of g(r), the D4 crystal has

FIG. 4. Evolution of local structural order in Lennard-Jones sys-
tems at T = 0.600 and P = 0. Panels (a) and (b) respectively show
the probability distributions P[q6(i, j)] and the probability distribu-
tions P[φloc(i)] at selected times.

g(rmax) 	 5.5 and g(rmin) 	 0.013, whereas a comparable
fcc crystal has g(rmax) 	 4 and g(rmin) 	 0.2 [26]. This
combination of less-correlated liquid structure and more-
correlated crystal structure substantially increases entropic
contributions to the free energy barriers for crystal nucleation
[12,14,15,18,21].

Further insights can be obtained by looking at the proba-
bility distributions for q6(i, j) and φloc(i) [Figures 3(b) and
3(c)]. Crystal nucleation is indicated by the appearance of
a high-q6 tail in P[q6(i, j)] at t = 1.43 × 104. At this point,
the local bond order in the system is ∼0.014% crystalline as
measured by the fraction of (i, j) pairs that have q6(i, j) �
0.4 [14]. This fraction grows to ∼33% over the next 100τ ,
and by t = 1.45 × 104 it is 99.2%. Thereafter it continues
growing slowly. Notably, at t = 1.43 × 104, there is as of yet
no high-φloc tail in P[φloc(i)] to match the abovementioned
high-q6 tail in P[q6(i, j)]. Also note that the long low-q6 tails
in P[q6(i, j)] for t � 1.45 × 104 are matched by long low-φloc

tails in P[φloc(i)], indicating that those parts of the system
which remain poorly crystallized contain voids that may even-
tually anneal out. As shown in Fig. 4, the same sequence
(appearance of a high-q6 tail in P[q6(i, j)] followed shortly
thereafter by the appearance of a high-φloc tail in P[φloc(i)])
is observed for T = 0.600; this sequence also occurs for T =
0.613. These results suggest that orientational-order fluctua-
tions often trigger positional-order (i.e., density) fluctuations
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TABLE I. Particle number densities employed in the NVT WCA
simulations.

T ρ T ρ

0.5625 1.226 0.6125 1.207
0.575 1.222 0.625 1.202
0.5875 1.217 0.6375 1.198
0.600 1.212 0.650 1.193

in 4D LJ liquids, much as they have been shown to do in 3D
hard-sphere and LJ liquids [37,40].

All of these systems had periodic simulation cell side
lengths L � 25σ for all t , removing the possibility that crys-
tallization was promoted by the periodic boundary conditions
as may have been the case [13] for the 648-atom systems
studied in Ref. [12]. Performing these simulations was en-
abled by hdMD’s efficient parallel implementation, which
allowed us to perform simulations with an N (5 × 105) that
was at least ten times larger than those employed in any
previous d > 3 simulations other than those of Ref. [31]. On
the other hand, the drawback to employing such a large N
was that limited computational resources prevented us from
simulating multiple independently prepared systems at the
same state point, as is typically done in modern simulation
studies to obtain robust results for any stochastic process
(e.g., crystallization [26,37]). Since orientational-order fluctu-
ations consistently appear slightly before density fluctuations
(Figs. 3 and 4), it seems unlikely that simulating these liquids
in NVT (as opposed to NPT) ensembles would qualitatively
change their crystal-nucleation dynamics. Employing NVT
ensembles could have a larger effect on the crystal-growth dy-
namics since it would suppress φloc fluctuations, but since this
is not our main focus, we defer examination of this possibility
to future work, and turn our attention to how the key results
discussed above are affected by the choice of interparticle
interactions (LJ or WCA) for a wide range of T .

To better understand the role played by attractive forces
[43], we followed the strategy employed in Ref. [26] and
performed NVT runs of length 2.5 × 105τ for WCA liquids at
each of the eight T values highlighted in Figs. 1 and 2. Runs
were conducted either at the ρ values the corresponding LJ
liquids had just before they crystallized (for T = 0.600, 0.613,
and 0.625) or at the ρ values the noncrystallizing systems
reached in the large-t limit; numerical values are given in
Table I. None of these liquids showed any signs of crystalliza-
tion. In particular, as shown in Fig. 5, the pressure, 〈q6(i, j)〉,
and 
φloc/〈φloc〉 all remained stable for all eight T , despite
the fact that the reduced pressures p̃ = p/(ρkBT ) were more
than double the equilibrium liquid-crystal coexistence pres-
sure p̃coex = 10.8 [19]. This result is consistent with previous
studies of 4D hard-sphere liquids [14–21].

Why, then, do 4D Lennard-Jones liquids readily form high-
quality crystals when hard-sphere and WCA liquids do not?
In an attempt to gain further insight, we compared the time-
averaged Epair and P[q6(i, j)] for LJ and WCA liquids and
D4 single crystals at the same temperatures and densities, for
the three T for which the LJ liquids crystallized at t ∼ 104

[45]. The single-crystal systems were prepared using NVT

FIG. 5. Pressure p, average two-particle bond-order correlator
〈q6(i, j)〉, and average fractional density fluctuations 
φloc/〈φloc〉 in
supercooled 4D WCA liquids maintained at constant densities and
temperatures (Table I).

equilibration runs at the densities these LJ systems reached in
the limit t → ∞ [Fig. 1(a)], e.g., ρ = 1.372 for T = 0.625.
Results are summarized in Fig. 6 and Table II. Figure 6(a)
shows that the LJ liquids’ P[q6(i, j)] have slightly longer
high-q6 tails compared to those of the WCA liquids, while
the WCA crystals’ P[q6(i, j)] have much longer low-q6 tails
compared to those of the LJ crystals. As a consequence, O
[Eq. (1)] is slightly larger for the WCA systems than it is for
the LJ systems [46]. Examining positional rather than orien-
tational order yields an analogous trend. Figure 6(b) shows

TABLE II. 
Epair = E cryst
pair − E liquid

pair and O for the three T for
which LJ liquids crystallized [45].

Potential T 
Epair O

WCA 0.600 −0.166 6.1 × 10−9

0.613 −0.181 3.7 × 10−9

0.625 −0.231 3.3 × 10−9

LJ 0.600 −2.75 4.8 × 10−9

0.613 −2.81 2.5 × 10−9

0.625 −2.87 1.5 × 10−9
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FIG. 6. Time-averaged results for P[q6(i, j)] [panel (a)] and g(r)
[panel (b)] in LJ and WCA liquids at the same ρ = 1.202 and LJ and
WCA single D4 crystals at the same ρ = 1.372.

that the liquid and crystalline g(r) are slightly more similar in
WCA than in LJ systems; in particular, WCA crystals have
a larger g(rmin). All the available data suggest that WCA
systems have a surface tension smaller than that of their LJ
counterparts [14,15].

Larger O lower the entropic barriers to crystallization by
increasing the likelihood for localized regions within a su-
percooled liquid to have crystal-like bond order [40]. This
was cited as the primary reason why 3D LJ systems crys-
tallize much faster than their WCA counterparts [26]. In
4D, however, it appears that the small differences in O are
easily overcome by the large differences in 
Epair. In other
words, it appears that energy trumps entropy in determining
how rapidly these systems crystallize. This effect cannot be
captured by the hard-sphere models employed in all previ-
ous studies of crystallization (or the lack thereof) in d > 3
[12,14–21] because such systems’ potential energies are iden-
tically zero.

IV. DISCUSSION AND CONCLUSIONS

References [14,15] showed that the absence of the most
obvious type of geometrical frustration, namely, the incompat-
ibility of the lowest-energy/maximally dense local structure
with the ground-state crystal, does not mean that supercooled
4D hard-sphere liquids can easily crystallize. This is true
because the actual local structure of these liquids is very

different than their maximally dense local structure. The
overlap O [Eq. (1)] of local bond order distributions in the
supercooled-liquid and equilibrium-crystalline states is sur-
prisingly (and substantially) less in 4D than it is in 3D, and it
continues to decrease rapidly, leading to free energy barriers
to crystallization that grow rapidly, with increasing d [14,15].
This trend is consistent with the recent observation that in-
creasing rc in 3D WCA and LJ systems substantially increases
both their O values and their nucleation rates [26].

Here we showed that 4D WCA and LJ systems violate this
paradigm. Specifically, we showed that supercooled N = 5 ×
105 LJ liquids maintained at zero pressure and constant tem-
peratures 0.59 < T < 0.63 formed high-quality D4 crystals
within ∼2 × 104τ , whereas WCA liquids that were main-
tained at the same densities and temperatures at which their
LJ counterparts nucleated did not crystallize even after 2.5 ×
105τ , despite the fact that the WCA systems had slightly
larger O values. One would expect that the LJ systems’ much
larger −
Epair (Table II) would dramatically speed up their
crystallization, but ours was (to the best of our knowledge)
the first actual observation of homogeneous crystallization
in simulated d > 3 liquids that followed physical (Newto-
nian) dynamics [22] and were large enough to eliminate the
possibility that crystallization was promoted by the periodic
boundary conditions.

Since −
Epair in systems with at-least-intermediate-range
attractive interactions probably continues to grow with d
[19,21,42], our results suggest that the widely accepted
hypothesis that crystallization rapidly gets harder with in-
creasing d [12,14,15] is only generally valid in the absence
of attractive interactions. At the very least, when considered
in combination with our demonstration that higher O values
do not necessarily lead to higher nucleation rates, they suggest
that accounting for energetic (not just entropic) contributions
to the free energy barriers to crystallization is necessary to
determine whether this hypothesis is true in general.

Here we compared LJ systems to WCA systems at the
same ρ and T . This strategy is commonly employed in studies
of how attractive forces influence crystallization because it
allows comparison of systems with similar liquid-state g(r)
[26], but it leaves several fundamental questions open. For
example, how strongly do the results discussed above depend
on the applied pressure? At the pressure employed in this
study (p = 0), attractive and repulsive forces in the LJ systems
are roughly equally important. As p increases, however, re-
pulsive forces should increasingly dominate [24], and both LJ
and WCA systems’ solidification behavior should gradually
approach the same hard-sphere-limit behavior as p → ∞.
Examining how this crossover occurs could improve the com-
parability of our results to experiments, which are typically
conducted at fixed p and T [35].

Moreover, systems at the same ρ and T will, in general,
have different degrees of supercooling, i.e., different T/Tmelt,
where Tmelt is the equilibrium melting temperature. Compar-
ing systems at the same T/Tmelt could determine to what
extent the much faster crystallization of LJ systems reported
above arises from deeper supercooling, especially if this com-
parison were combined with studying how their interfacial
free energies, chemical potential differences, and critical-
nucleus radii depend on T [15,35]. However, since performing

044604-6



HOMOGENEOUS CRYSTALLIZATION IN … PHYSICAL REVIEW E 109, 044604 (2024)

these investigations would require carrying out very extensive
(and very computationally expensive) additional simulations
and data analyses, we leave these questions to future work.

We conclude by mentioning one additional potential impli-
cation of our results for future studies of the glass transition.
Monodisperse 4D hard-sphere and repulsive soft-sphere liq-
uids are particularly useful for studies of this transition
[16,18,47,48] because they lack the strong correlations be-
tween particle size and particle mobility which make it
challenging to interpret the heterogeneous dynamics of model

bidisperse and polydisperse supercooled liquids [49–51]. Our
results demonstrate another way such liquids can be useful:
their crystallization propensity can be tuned by varying their
cutoff radius rc.
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