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Densest versus jammed packings of bent-core trimers
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We identify putatively maximally dense packings of tangent-sphere trimers with fixed bond angles (θ =
θ0), and contrast them to the disordered jammed states they form under quasistatic and dynamic athermal
compression. Incommensurability of θ0 with three-dimensional (3D) close packing does not by itself inhibit
formation of dense 3D crystals; all θ0 allow formation of crystals with φmax(θ0) > 0.97φcp. Trimers are always
able to arrange into periodic structures composed of close-packed bilayers or trilayers of triangular-lattice planes,
separated by “gap layers” that accommodate the incommensurability. All systems have φJ significantly below
the monomeric value, indicating that trimers’ quenched bond-length and bond-angle constraints always act to
promote jamming. φJ varies strongly with θ0; straight (θ0 = 0) trimers minimize φJ while closed (θ0 = 120◦)
trimers maximize it. Marginally jammed states of trimers with lower φJ (θ0 ) exhibit quantifiably greater disorder,
and the lower φJ for small θ0 is apparently caused by trimers’ decreasing effective configurational freedom as
they approach linearity.
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I. INTRODUCTION

Identifying the densest packings of congruent particles has
fascinated mankind for centuries [1]. Computational tech-
niques developed in recent years have facilitated identifying
the densest crystalline packings of ellipsoids [2], the Platonic
and Archimidean solids [3], “superballs” [4], and a wide vari-
ety of convex and concave polyhedra [5,6]. Such anisotropic
particles have proven broadly useful since they can be assem-
bled into structures with complex, tunable order [7,8].

In contrast, dense packings of particles composed of fused
spheres have received far less attention. This is surprising
because their quenched intraparticle constraints (i.e., the dis-
tances between and relative orientations of the fused spheres)
are tunable and are not in general compatible with three-
dimensional (3D) close packing. For example, particles com-
posed of eight tangent spheres fused into a cube obviously
cannot pack at φcp = π/

√
18 � 0.7405 as individual spheres

can. Thus fused-sphere particles offer many of the same
opportunities for forming solids with tunable order that those
with more exotic shapes do, but with the advantage of being
far easier to synthesize.

In experiments, of course, anisotropic colloidal and gran-
ular particles do not typically form bulk crystalline phases.
Special techniques are necessary to avoid jamming or glass
formation. However, a multitude of such techniques are now
available [9,10], and understanding particles’ densest possible
packings remains highly useful for understanding and
ultimately controlling those they form under realistically
achievable preparation protocols [11,12]. Thus studies that
characterize both the densest packings that a given class of
fused-sphere particles can form and those that they do form
under a variety of preparation protocols, and identify key
reasons for any differences between these, are of particular
interest.

*rshoy@usf.edu

Here we perform such a study for bent-core fused-sphere
trimers. As illustrated in Fig. 1, their shape can be character-
ized using two parameters: the bond angle θ0 and the ratio
R of intermonomer bond length to center-monomer diame-
ter. Tangent-sphere trimers have R = 1; smaller values of R
lead to overlap. While the first colloidal dimers and trimers
had R < 1 [13,14], “colloidomers” with R � 1 have recently
been synthesized [15,16], and granular trimers with R � 1
can be produced using readily available techniques such as
spot welding, adhesive bonding, and 3D printing [17–19].
Recent experiments [19,20] employing 3D-printed granular
trimers have shown that closed (θ0 = 120◦) and straight (θ0 =
0) trimers respectively maximize and minimize the packing
efficiency and elastic moduli of these systems’ disordered
jammed states; associated simulations [20] have predicted that
a complex interplay of θ0 and R determines these properties.
In this paper, we will focus primarily on the tangent-sphere
case because it allows for straightforward identification of
the densest packings and comparison to the very extensive
literature on monodisperse hard spheres.

The organization of the remainder of the paper is as fol-
lows. In Sec. II we describe a method for identifying bent-
core tangent-sphere trimers’ densest crystalline packings, and
characterize how the packings obtained via this method vary
with θ0. In Sec. III we contrast these to the disordered, jammed
solid morphologies trimers form under both dynamic and qua-
sistatic athermal compression, and also investigate the roles
played by monomer overlap (R < 1) and spatial dimension.
Finally, in Sec. IV we summarize our results and conclude.

II. MAXIMALLY DENSE PACKINGS

A. Methods for obtaining crystalline structures

We begin with the hypothesis that the densest crys-
talline packings of tangent-sphere trimers include many close-
packed planes. This must be true for θ0 = 0, cos−1(5/6) �
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FIG. 1. Rigid bent-core trimers with bond angle θ0 and bond-
length to monomer-diameter ratio R. Here we focus primarily on the
tangent-sphere (R = 1) case.

33.5573◦, 60◦, cos−1(1/3) � 70.5288◦, 90◦, and 120◦ since
trimers with these θ0 can form 3D close-packed lattices at
the maximum sphere packing density φcp. It is reasonable to
suppose that the densest crystals formable for other θ0 close
to these six values will be slight perturbations of close-packed
lattices. Thus we employ a method that generates 3D crystals
by first generating lattice planes that vary away from those
found in close-packed lattices in a controlled fashion and then
finding the optimal ways to stack them.

The first step is to define the planar configuration shown
in Fig. 2(a). This configuration is a two-dimensional (2D)
Bravais lattice with lattice vectors �b1 = {1, 0, 0} and �b2 =
{cos(α), sin(α), 0}. The positions of spheres 1–8 are de-
fined in Table I. If α = 60◦, the reference sphere contacts
spheres 1, 3, 4, 5, 7, and 8, forming the triangular
lattice. If α = 120◦, the reference sphere contacts spheres
1, 2, 3, 5, 6, and 7, again forming the triangular lattice. Oth-
erwise the reference sphere contacts spheres 1, 3, 5, and 7,
forming a less-dense 2D lattice, e.g., the square lattice for α =
90◦. Now suppose [as illustrated in Fig. 2(c)] that a second
identical plane is stacked above the first one, and define �b3 as
the vector from the center of the reference sphere in Fig. 2(a)
to the center of the reference sphere in the plane above it. We
wish to solve for the �b3 that will produce a maximally dense
two-layer structure, i.e., minimize �b3 · ẑ.

First, however, it is useful to consider arbitrarily stacked
two-layer structures. Requiring that the layers be as close
together as possible (along the ẑ axis) for any given orien-
tation O defines a unique path for �b3. To see how, consider
two hard unit spheres held a fixed distance d apart (with
1 � d � 2.) When a third identical sphere is introduced and
forced to maintain contact with both others, it will be free

FIG. 2. Plane-stacking algorithm: basic definitions. (a) Defini-
tion of α, the angle characterizing the 2D lattice planes used to
generate 3D crystals. (b) Distances and orientation angles defining
positions of spheres neighboring the reference sphere (Table I).
(c) Illustration of the vectors �b1, �b2, �b3 that define the relative
positions of nearby monomers in adjacent planes.

TABLE I. Positions (�rn), distances to (Dn), and orientations (On)
of spheres 1–8 in Fig. 2 (with respect to the reference sphere) as
a function of the angle α. The colors in the second column are
illustrated in Figs. 2(b) and 3.

n Color �rn Dn On

1 Cyan �b1 1 0
2 Black �b1 + �b2

√
2 + 2 cos(α) α/2

3 Orange �b2 1 α

4 Green �b2 − �b1
√

2 − 2 cos(α) (π + α)/2
5 Blue −�b1 1 π

6 Red −�b1 − �b2
√

2 + 2 cos(α) π + α/2
7 Magenta −�b2 1 π + α

8 Yellow �b1 − �b2
√

2 − 2 cos(α) (3π + α)/2

to rotate about the line connecting them. The center of the
third sphere will then trace out a circular disk of radius
R(d ) =

√
1 − d2/4—centered on and perpendicular to this

line—as it rotates. Now suppose that the first two spheres are
the reference sphere and one of the spheres 1–8 from Fig. 2(a),
while the third sphere lies at �b3. Hard-sphere constraints will
limit the above-mentioned rotation in a manner that depends
only on α; see Table I, with d = Dn. The accessible part of the
above-mentioned circular disk is a circular arc. Figure 3 shows
how combining the arcs corresponding to spheres 1–8 yields
the full set of potential configurations for the third sphere
within the stacked two-layer structures we are considering.

To describe these arcs, we will construct the vector ��(d,O)
extending from the origin to an arbitrary point on the edge of
a circular disk that has radius R(d ), is centered at �c(O) =
d{cos(O)/2, sin(O)/2, 0}, and is upright and faces towards
the origin [i.e. its unit normal vector is −ĉ(O)]. If we define
a variable χ describing the angular position along the disk’s
rim, with χ = 0 corresponding to the top of the disk, �� can be

FIG. 3. Plane-stacking algorithm: circular arcs. Top panels: the
eight arcs associated with spheres 1–8 from Fig. 2(a). Bottom panels:
the union of the upper portions of of these arcs (i.e., the portions
above their z > 0 intersection points) is the path followed by �b3 as
the orientation of the second 2D layer varies. The left panels illustrate
these features for α = 60◦, while the right panels illustrate them for
α = 90◦.
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TABLE II. Definition of �b3 in terms of the quantities defined in Eqs. (2)–(4). β i
min and β i

max depend only on α. For β i
min(α) � β � β i

max(α),
�b3 ≡ �bi

3(α, β ) is given by the indicated ��n.

i 	(α)β i
min 	(α)β i

max
�bi

3(α, β )

60◦ � α � 90◦

1 0 2χ1(α) ��1[α, β	(α) − χ1(α)]
2 2χ1(α) 4χ1(α) ��3[α, β	(α) − 3χ1(α)]
3 4χ1(α) 4χ1(α) + 2χ2(α) ��4[α, β	(α) − 4χ1(α) − χ2(α)]
4 4χ1(α) + 2χ2(α) 6χ1(α) + 2χ2(α) ��5[α, β	(α) − 5χ1(α) − 2χ2(α)]
5 6χ1(α) + 2χ2(α) 8χ1(α) + 2χ2(α) ��7[α, β	(α) − 7χ1(α) − 2χ2(α)]
6 8χ1(α) + 2χ2(α) 8χ1(α) + 4χ2(α) ��8[α, β	(α) − 8χ1(α) − 3χ2(α)]

i 	(α)β i
min 	(α)β i

max
�bi

3(α, β )

90◦ � α � 120◦

1 0 2χ1(α) ��1[α, β	(α) − χ1(α)]
2 2χ1(α) 2χ1(α) + 2χ2(α) ��2[α, β	(α) − 2χ1(α) − χ2(α)]
3 2χ1(α) + 2χ2(α) 4χ1(α) + 2χ2(α) ��3[α, β	(α) − 3χ1(α) − 2χ2(α)]
4 4χ1(α) + 2χ2(α) 6χ1(α) + 2χ2(α) ��5[α, β	(α) − 5χ1(α) − 2χ2(α)]
5 6χ1(α) + 2χ2(α) 6χ1(α) + 4χ2(α) ��6[α, β	(α) − 6χ1(α) − 3χ2(α)]
6 6χ1(α) + 4χ2(α) 8χ1(α) + 4χ2(α) ��7[α, β	(α) − 7χ1(α) − 4χ2(α)]

written as

��(d,O, χ ) =

⎡
⎢⎣

d cos(O)/2 − R(d ) sin(O) sin(χ )

d sin(O)/2 + R(d ) cos(O) sin(χ )

R(d ) cos(χ )

⎤
⎥⎦. (1)

Substituting the Dn(α) and On(α) from Table I into this
formula gives the vectors ��n(d,O, χ ) respectively associated
with spheres n = 1 − 8:

��n(α, χ ) =

⎡
⎢⎣

Dn cos(On)/2 − R(Dn) sin(On) sin(χ )

Dn sin(On)/2 + R(Dn) cos(On) sin(χ )

R(Dn) cos(χ )

⎤
⎥⎦. (2)

Since Dn and On are functions only of α, the vectors ��n are
functions of only two variables: α and χ . The various circles
shown in the top panels of Fig. 3 are traced out by ��n(α, χ ) as
χ varies from 0 to 2π .

The next step is to identify the ranges of χ corresponding
to the above-mentioned circular arcs. Finding the arcs’ points
of intersection (as a function of α) will allow us to determine
the path taken by �b3 as the upper layer in Fig. 2(c) is shifted
around at the minimum height that respects the hard-sphere
nonoverlap constraints. It turns out that these points can be
described using only two additional scalar functions χ1(α)
and χ2(α), neither of which depend on n:

χ1(α) = π

2
− sin−1

(√
2[1 + 2 sin(q)]

3[1 + sin(q)]

)

χ2(α) = π

2
− 2 sin−1

(
1√

2 + 2 sin q

)
, (3)

where q ≡ |α − π/2|. The total range of χ subtended by the
circular arcs as the upper layer traverses the gaps is

	(α) = 8χ1(α) + 4χ2(α). (4)

Further details on the derivation of these formulas for
χ1, χ2, and 	 are given in the Appendix.

If we define a parameter β that varies from 0 to 1 during
a full traversal, the vector �b3(α, β ) is given by the formulas
listed in Table II. As is apparent from Fig. 3, the vector ��
passes over at most six of the arcs corresponding to spheres
1–8 as it traverses the gaps; the others are excluded be-
cause their Dn are too large. These six arcs are labeled i =
1, 2, . . . , 6 in the table, and the traversal of �b3 over them is
schematically depicted in Fig. 4.

Three-dimensional space can be filled with unit-diameter
spheres at positions �ruvw(α, β ) = u�b1 + v�b2(α) + w�b3(α, β ),
where {u, v,w} ∈ Z3, but the resultant lattices will be only
a small subset of those we need to consider to identify the
maximally dense trimer crystals for all θ0. However, arbitrary
space-filling planar stackings can be described using M-plane
bases where the positions of successive planes are related
using M different β values {β1, . . . , βM}. We constrain these
planes to have the same value of α because different α would
produce massive incommensurability. Table III illustrates the

FIG. 4. Plane-stacking algorithm; depiction of the traversal made
by �b3 as β varies. The configuration of the reference layer and
subtended circular arcs are shown for left panel: α = 60◦, β = 7/12
and right panel: α = 90◦, β = 3/8. The blue-shaded regions have
been traversed for these values of β, while the gray-shaded regions
have yet to be traversed.
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TABLE III. Example crystalline orderings for M = 2. Here ∨
and ∧, respectively, mean “or” and “and,” and (x mod y) is the
remainder of (x/y).

α (◦) Condition for β1, β2 Order

60 or 120 (β1 ∨ β2 mod 1
6 = 0) ∧ (|β1 − β2| mod 1

3 = 0) FCC

60 or 120 (β1 ∨ β2 mod 1
6 = 0) ∧ (|β1 − β2| mod 1

3 = 1
6 ) HCP

90 (β1 ∨ β2 mod 1
4 = 0) ∧ (|β1 − β2| mod 1

4 = 0) FCC

diversity achievable with this method for M = 2. It also
illustrates a key strength of our method: the ability to generate
different lattice planes of the same crystal by varying α. For
example, the planes for α = 60◦ or 120◦ correspond to the
{1 1 1} planes of an FCC lattice, whereas for α = 90◦ they
correspond to the {1 0 0} planes of the same FCC lattice.

Trimers with any θ0 can form periodic (M � 2)-layer pla-
nar stackings where each periodic group includes at least a
bilayer of close-packed crystal [as in Fig. 2(c)]. If θ0 is in-
commensurable with 3D close packing, trimer crystals cannot
include more than three consecutive close-packed layers; they
must include defects. Results from 2D systems [21] suggest
that these will take the form of “gaps” between close-packed
bilayers or trilayers that close when θ0 is commensurable
with 3D close packing, and hence that maximally dense bent-
core trimer crystals for all θ0 can be identified using only
2 � M � 3.

Rather than identifying the densest trimer crystals using a
linear programming or Monte Carlo–like algorithm such as
Torquato and Jiao’s ASC [22,23], we identify them using our
α-β formalism. The vectors �b1, �b2(α), and �b3(α, β ) define
a family of parallelopipeds. Consider a fundamental cell C
containing nx × ny × nz such parallelopipeds along the x, y,
and z directions. The cell can be fully described as

C = C(nx, ny, nz, α, β1, . . . , βM ). (5)

C tiles space and forms the basis for a periodic M-layer
planar stacking if nz = M. Since C must contain an integer
number of trimers (ntri), we have the restriction nxnyM = 3ntri.
Results for 2D bent-core tangent-disk trimers [21] as well as
other concave hard particles with a wide variety of shapes
[6] suggest that the densest packings for arbitrary θ0 will be
Kuperberg double lattices [24] and hence that ntri = 2 is a
sufficiently large basis.

If these crystals consist of close-packed M-layers separated
by gap layers, we can set all but one of the {β} to zero, i.e., we
can set β1 = 0 for M = 2 and β1 = β3 = 0 for M = 3. The
fundamental cells can now be fully described as

C = C(nx, ny, M, α, β2). (6)

We find putatively maximally dense trimer crystals by looping
over the remaining variables {nx, ny, α, β2}. For ntri = 2 the
loops over nx and ny are trivial: {nx, ny} = {(1, 2), (2, 1)} for
M = 3 and {nx, ny} = {(1, 3), (3, 1)} for M = 2. Since all
intermonomer distances are invariant under the transforma-
tion �b3(90◦ − ξ, β ) → �b3(90◦ + ξ, β ) for all 0 � ξ � 30◦,
we consider the ranges 60◦ � α � 90◦ and 0 � β2 � 1. The
loop we execute is a double loop over all (αs, β2,t ) where
αs = (60 + 0.12s)◦ and β2,t = t/600, where s ∈ [0, 250] and
t ∈ [200, 400]. Each (s, t ) pair produces a different periodic

planar stacking, so the total number of distinct packings
produced is 50 451 [25].

Careful readers will note that we have not yet determined
which of these packings correspond to trimer crystals. We do
this by identifying all contacting (i, j, k) and (l, m, n) triplets
within the fundamental cells that consist of spheres at posi-
tions (�ri, �r j, �rk, �rl , �rm, �rn) that satisfy ri j = r jk = 1 and rlm =
rmn = 1, where �ri j = �r j − �ri and so on, and of course i �= j �=
k �= l �= m �= n. During this procedure, periodic boundary
conditions are applied to the fundamental cell along all three
directions, and the minimum image convention is employed.
The (i, j, k) and (l, m, n) triplets identified this way have bond
angles θi jk = cos−1(�ri j · �r jk ) and θlmn = cos−1(�rlm · �rmn), re-
spectively. If θi jk = θlmn, then the packing is a bent-core
trimer crystal with θ0 = θi jk = θlmn. We store its packing
fraction in the set {φst (θ0)}, where again s ∈ [0, 250] and t ∈
[200, 400]. This procedure allows us to identify φmax(θ0) =
max({φst (θ0)}) for all θ0 in a single sweep. Note that its
essential feature is that we impose the fixed-angle (θ = θ0)
restriction a posteriori rather than a priori. We find that the
above procedure is far more efficient for these systems than
alternative methods such as ASC.

B. Densest tangent-sphere-trimer crystals

Numerical results for φmax(θ0) are shown with red sym-
bols in Fig. 5(a). Apparently φmax(θ0) is a piecewise-smooth
function with either five or six distinct branches. Four of
these branches begin and end with close-packed crystals. The
smooth variation of φmax between cusplike maxima at the θ0

FIG. 5. Structural order of maximally dense bent-core tangent-
sphere trimer crystals. In both panels, the blue curves show analytic
results from Table V, and red symbols show numerical results from
the method described in Sec. II A. The “FCC/HCP” horizontal lines
in panel (b) describe the β2(θ0)-dependent order when α(θ0) = 60◦

(as is the case for all families except IVb.)
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TABLE IV. Ordering of maximally dense bent-core tangent-
sphere trimer crystals: basic properties. Here θ1 = 65.3512◦ and θ2 =
72.4530◦. The average monomer coordination number Z includes
both covalent bonds and noncovalent contacts. Note that Z (θ0) = 12
for θ0 = 0, cos−1(5/6), 60◦, cos−1(1/3), 90◦, and 120◦; the values
given are for the intermediate θ0.

Family Range of θ0 ntri M Z

I 0–cos−1(5/6) 1 3 11 1
3

II cos−1(5/6)–60◦ 1 3 11 1
3

III 60◦–θ1, θ2–90◦ 2 2 11

IVa θ1–cos−1(1/3) 1 3 11 1
3

IVb cos−1(1/3)–θ2 1 3 10

V 90◦–120◦ 2 2 11

that are commensurable with close packing is reminiscent
of other packing problems where φmax(p) varies smoothly
between cusplike maxima as a function of some grain-shape
or confinement-geometry parameter p [12,26,27] and strongly
suggests that the crystals lying on each branch share many
common features. We therefore label these branches as “fam-
ilies” I, II, III, and V. While the other branch (family IV)
does not obviously begin and end with a close-packed crystal,
it does include one [at θ0 = cos−1(1/3)], suggesting that its
crystals also share a common character.

Each family’s characteristic unit-cell and gap-layer struc-
ture is depicted in Fig. 6, and Table IV further summarizes
their basic properties. All the crystals within any given family
share common values of of ntri and M. As hypothesized
above, for θ0 � 60◦ the densest bent-core-trimer crystals have
a single-trimer basis and consist of close-packed trilayers
separated by gap layers. For θ0 > θ2 they are Kuperberg
double lattices [24] consisting of two interpenetrating lattices
of trimers related by a displacement plus a 180◦ rotation of
all constituents about their centers of inversion symmetry, and
they have close-packed bilayers separated by gap layers. In
both cases, the size of the gaps increases with the distance
of θ0 from angles commensurable with close packing. The
reason for the trilayer-versus-bilayer distinction is the same
as for 2D bent-core trimers [21]: the inability of a reference
trimer to form a bond triangle on its concave side with a
monomer belonging to a second trimer when θ0 > 60◦. This
distinction quantitatively predicts the degree to which the
minima of φmax(θ0) are lower for families III and V than
for families I and II. The minimal densities of families I,
II, III, and V are, respectively, φ∗

1 = 0.980181φcp (at θ0 =
16.8421◦), φ∗

2 = φ∗
1 (at θ0 = 45◦), φ∗

3 = 0.970563φcp (at θ0 =
75.5225◦), and φ∗

5 = φ3∗ (at θ0 = 104.478◦). They satisfy

φcp − φ∗
3

φcp − φ∗
1

· φ∗
1

φ∗
3

= φcp − φ∗
5

φcp − φ∗
1

· φ∗
1

φ∗
5

= φcp − φ∗
3

φcp − φ∗
2

· φ∗
1

φ∗
2

= φcp − φ∗
5

φcp − φ∗
2

· φ∗
2

φ∗
5

= 3

2
. (7)

Here the 3/2 reflects the fact that the gap-layer density is
50% higher for families III and V than it is for families I and
II. Similar relations hold for 2D systems [21].

FIG. 6. Illustration of bent-core trimer crystals’ θ0-dependent
structure. Panels in the left column highlight the fundamental cells
C for the least dense members of families I–III, IVa, and V, i.e., the
cells for θ0 = 16.84◦, 45◦, 65.36◦, 75.52◦, and 104.47◦ (from top
to bottom). Panels in the right column highlight the close-packed-bi-
and trilayer-plus-gap structure for the same systems. In all panels, red
lines indicate the boundaries of C, and green lines indicate covalent
backbone bonds.

Although φmax(θ0) is continuous at the cusps, crystal struc-
ture is often discontinuous. In general, ntri, M, and the ar-
rangement of trimers within fundamental cells can all change
going from one family to the next. At each cusp where such
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TABLE V. Ordering of the densest bent-core tangent-sphere trimer crystals: analytic expressions for β2(θ0 ) and φmax(θ0). All families have
α(θ0) = 60◦ except for family IVb, which has α(θ0) = sec−1 [sec(θ0) − 1]. Here sign(x) = 1 (−1) if x > 0 (x < 0).

Family β2(θ0 ) φmax(θ0 )/φcp

I
2

3
+ cos−1

(
1
3 [4 cos(θ0 ) − 1]

)
6
[
180◦ − 4 sec−1(

√
3)

] 9

5 + 4 cos(θ0 ) + √
cos(θ0 ) − cos(2θ0 )

II
5

12
+ sin−1

(
1
3

[
2
√

2 cos(θ0 ) + √
1 − 2 cos(2θ0 )

])
sign(π/4 − θ0 )

6
[
π − 4 sec−1(

√
3)

] 12

4[2 + cos(θ0 )] + √
2 − 4 cos(2θ0 )

III
5

12
− sin−1

(
1
3

[
4 cos(θ0 ) − 1

])
6
[
180◦ − 4 sec−1(

√
3)

] 2

1 + √
cos(θ0 ) − cos(2θ0 )

IVa
5

12
+ sin−1

(
1
9

[
4 cos(θ0 ) − 8

√
cos(π − θ0 ) + cos(π − 2θ0 ) + 1

])
6
[
180◦ − 4 csc−1(

√
3)

] 18
√

2

12
√

2 +
√

81 − [
1 + 4 cos(θ0 ) − 8

√
cos(180◦ − θ0 ) − cos(180◦ − 2θ0 )

]2

IVb 1/2

√
2 sin(θ0/2) tan(θ0/2)√

1 − 2 cos(θ0 )

V
11

12
+ sin−1

(
1
3

[
4 cos(θ0 ) + 1

])
6
[
180◦ − 4 sec−1(

√
3)

] 2

1 +
√

cos(180◦ − θ0 ) + cos(180◦ − 2θ0 )

changes occur, there are two degenerate lattices with the same
φ = φmax(θ0). For example, at θ0 = 60◦, families II and III
are both FCC lattices with φ = φcp, but the arrangements of
trimers within these two lattices are distinct.

Additional insight into the structure of these maximally
dense crystals can be gained by examining the topology of
their bond or contact network and trends in their β2(θ0).
Both the close-packed-trilayer-plus-gap families (I, II, and
IVa) and the close-packed-bilayer-plus-gap families (III and
V) share the same average monomer coordination number
Z in addition to the same φ∗. Numerical results for β2(θ0)
are given in Fig. 5(b). These results, together with visual
inspection of the fundamental cells and gap-layer structure,
suggests that the evolution of any given family’s structure as
θ0 varies can be described (mathematically) as a continuous
displacive transformation. All results are consistent with the
hypothesis that these are Shoji-Nishiyama-like FCC↔HCP
shear transformations [28]. Family IVb is an exception to this
pattern, for reasons we will discuss below.

As discussed above, all these crystals are characterized by
their fundamental cells C(θ0) = C(nx, ny, M, α, β2) [Eq. (6)],
where each of the arguments to the C function is θ0-dependent.
Recall that C is a parallelopiped defined by the vectors
nx �b1, ny�b2(α), and (M − 1)�b3(α, 0) + �b3(α, β2). Its associ-
ated packing fraction is simply

φ[C] = 3ntri(π/6)

[nx �b1 × ny�b2(α)] · [(M − 1)�b3(α, 0) + �b3(α, β2)]

= πntri

2nxny sin(α)ẑ · [(M − 1)�b3(α, 0) + �b3(α, β2)].
(8)

The numerical data shown in Fig. 5(b) suggest that each fam-
ily’s β2(θ0) is describable by a continuous analytic function.
This is indeed the case; expressions for the β2(θ0) are given
in Table V. Since the densest crystals’ α(θ0) are also given
by exact analytic expressions, we now have a complete set
of parameters and analytic functions to plug into Eq. (8).
Plugging in values of ntri and M (Table IV) together with
these analytic forms for α(θ0) and β2(θ0) yields the exact
expressions for φmax(θ0) given in Table V. Note that the values
of θ1 and θ2 given in Table IV were obtained by solving for the

θ0 at which the relevant analytic φmax(θ0) functions are equal.
Further details on the derivation of these formulas for β2 and
φmax are given in the Appendix.

Careful readers will note that we have not yet discussed
family IV’s structure in detail; we do so now. Clearly the
solution presented in Fig. 5 and Table IV is more complicated
in the range 60◦ � θ0 � 90◦ than it is for θ0 < 60◦ or θ0 >

90◦. The dashed cyan curve in Fig. 7 shows φmax(θ0) for
families III and IV. Family III is the densest structure for
two disjoint ranges of θ0: 60◦ � θ0 � θ1 and θ2 � θ0 � 90◦.
The reason for the above-mentioned disjointness is simply
that family IV’s density is greater than family III’s in the
range θ1 � θ0 � θ2. Family IVa’s close-packed-trilayer-plus-
gap structure is similar to families I and II; its minimal density
φ∗

4a = φ∗
1 = φ∗

2 occurs at θ0 = 62.80◦. Family IVb also has
a trilayer-plus-gap structure but is unique among families
I–V in that [except at θ0 = cos−1(1/3)] its α(θ0) �= 60◦ and
hence its trilayers are not close-packed. It is also unique
in having a constant β2(θ0) = 1/2; note that the distance
between the stacked planes depicted in Figs. 2–4 is minimal
for β = 0 and 1/2. Thus, in contrast to families (I–IVa, V)
where gap layers accommodate the incommensurability of

FIG. 7. Maximally and nonmaximally dense crystalline struc-
tures in the range 60◦ � θ0 � 90◦. The curves show the analytic
functions given in Table V.
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θ0 with 3D close packing, family IVb maximizes density
while accommodating this incommensurability by adopting a
stacked-plane structure that is not triangular.

All of the above discussion has omitted one key considera-
tion: degeneracy of the solutions for β2. For example, the fact
that θ0 = 0, 60◦, 90◦, and 120◦ trimers can form both FCC
and HCP crystals while θ0 = cos−1(5/6) and cos−1(1/3)
trimers can form HCP but not FCC crystals is not ap-
parent from Fig. 5(b). When α = 60◦, the structure of
trimer crystals is invariant under shifts of β2(θ0) by
±1/3 and also under reflections of β2(θ0) about β2 =
0, 1/6, 1/3, 1/2, 2/3, 5/6, and 1. A second type of
degeneracy arises for θ0 � 60◦: reflections of β2(θ0) about
m/12, where m is an odd integer. These operations leave φ

unchanged but do change crystals’ structure. For example, the
reflection β2(θ0) → β ′

2(θ0) = 7/12 − [β2(θ0) − 7/12] takes,
e.g., the θ0 = 119◦ near-FCC lattice [Fig. 5(b)] into a near-
HCP lattice.

III. JAMMED PACKINGS

A. Molecular dynamics simulation method

We now examine how our model trimers solidify under
dynamic compression using molecular dynamics (MD) sim-
ulations. Each simulated trimer contains three monomers of
mass m. Trimers’ bond lengths and angles are held fixed by
holonomic constraints. Monomers on different trimers interact
via a harmonic potential UH (r) = 5u0(1 − r/σ )2�(σ − r),
where u0 is the energy scale of the pair interactions, σ is
monomer diameter, and � is the Heaviside step function.

Initial states are generated by placing ntri = 1333 trimers
randomly within a cubic cell at a packing fraction φ0 =
exp(−2/3)φcp. Periodic boundary conditions applied along
all three directions and Newton’s equations of motion are
integrated with a time step δt = 0.005τ , where the unit of
time is τ =

√
mσ 2/u0. Systems are equilibrated at finite tem-

perature until intertrimer structure has converged, then rapidly
cooled to T = 0. Then they are hydrostatically compressed
at a true strain rate ε̇, i.e., the cell side length L is varied
as L = L0 exp(−ε̇t ). To maintain near-zero temperature dur-
ing compression, we employ overdamped dynamics with the
equation of motion

m �̈ri = �F − γ �̇ri + h({�r, �̇r}), (9)

where �ri is the position of monomer i, �F is the force arising
from the harmonic pair interactions, the damping coefficient
γ = 104ε̇, and the h({�r, �̇r}) term enforces trimer rigidity [29].
To access the quasistatic limit, we also perform compression
runs wherein compression is halted at equal increments of
ln(φ/φ0) (i.e., equal volumetric strain intervals) and followed
by energy minimization as is standard in studies of jamming
[30]. As in our recent study of 2D bent-core trimers [21],
jamming is defined to occur when the nonkinetic part of the
pressure P exceeds Pthres = 10−4u0/σ

2 [31]. All MD simula-
tions are performed using LAMMPS [33].

B. Variation of φJ with θ0 and strain rate

Figure 8(a) shows φJ (θ0) for three different compression
protocols. The compression-rate dependence is typical for

FIG. 8. Effect of the bond angle and compression rate on jam-
ming of bent-core tangent-sphere trimers. Panel (a) shows results
for φJ (θ0; ε̇), and panels (b) and (c), respectively, show results for
P(VVor ) and fv (r) in selected quasistatically compressed, marginally
jammed systems. In panels (b–c), the magenta curves show results
for monomers, and the dotted black curves show fits to Eq. (10). The
noise in panel (a) and in all subsequent figures is statistical; all results
are for one ntri = 1333 system for each θ0.

granular materials [34]. The variation in ∂φJ (θ0; ε̇)/∂ε̇ with θ0

is small compared to the statistical noise in φJ , suggesting that
the coupling of compression-rate- and particle-shape-driven
effects is weak. We will focus on results for quasistatically
compressed systems for the remainder of this paper.

Three key results are immediately apparent from the varia-
tion of φJ with θ0. First, all trimers have φJ significantly below
the monomeric value (φmon

J � 0.637 [30]). This indicates that
the quenched bond-length and bond-angle constraints always
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strongly promote jamming. Second, ∂φJ/∂θ0 is large and
positive for θ0 � 20◦ and for θ0 � 100◦, but much smaller
in the range 20◦ � θ0 � 100◦. Third, φJ (θ0) does not track
φmax(θ0); instead, its variation appears to arise from shape-
dependent jamming mechanisms. Explaining these results
will be our focus for the remainder of this section.

The significantly lower φJ for trimers with smaller θ0

strongly suggests that their marginally jammed (MJ) states are
more disordered. One simple metric for systems’ degree of
disorder is the breadth of their Voronoi volume distributions.
Figure 8(b) shows the monomeric Voronoi-volume proba-
bility distributions P(VVor ) for selected θ0 (calculated using
voro++ [35]) and contrasts them to those for a MJ system of
3ntri monodisperse monomers; note that the latter jam at φmon

J
for our quasistatic compression protocol. Systems with lower
φJ are more disordered in the sense that their P(VVor ) distribu-
tions are broader and have longer tails [36]; the inset, which
plots P(VVor ) as a function of the scaled volume φJ (θ0)VVor,
illustrates this result more clearly. However, the distributions
even for the systems with the highest φJ remain typical of
those found in amorphous solids [37], suggesting that none
of the systems exhibit significant crystallization. Indeed, all
results are consistent with trends found in monomeric hard-
and soft-sphere systems [34,38]; the distinction is that in our
case the variations in φJ and P(VVor ) result from varying θ0

instead of from varying systems’ preparation protocol.
Another way to interrogate the θ0 and rate dependence

of φJ is to examine the statistical properties of the voids
within jammed systems. Void size distributions have recently
been shown to be intimately connected to to both the local
packing geometries within and the uniformity of MJ states
[39]. Moreover, results for ellipsoids, rods, and semiflexible
polymers [40–42] suggest that the larger aspect ratio of small-
θ0 trimers will lead to jammed states with an excess of large
voids. We calculated the fraction fv (r) of empty space lying
a distance d > r away from the center of any monomer by
sampling a large number of randomly placed points within
our MJ configurations. By definition, fv (0.5σ ) = 1 − φ, and
for r > .5σ fv declines monotonically with increasing r.
Figure 8(c) shows fv (r) for the same systems analyzed in
Fig. 8(b). Data for all systems are remarkably well fit by the
simple three-parameter functional form

fv (r) = A exp

[
−

(
r

r0

)b
]
, (10)

where r0 is slightly less than 0.5σ and A � (1 −
φJ ) exp [(0.5σ/r0)b]. We find that the exponent b increases
from ∼15/4 to ∼9/2 with increasing φJ (e.g., with increasing
θ0 for θ0 � 20◦ and for θ0 � 100◦) [36]. However, these
differences in MJ systems’ void structure are seemingly
quantitative rather than qualitative.

Taken together, the above results imply that bent-core
trimers are a model system in which both φJ and the degree of
MJ states’ disorder can be tuned by varying θ0. However, it is
less clear how and why these effects arise. Visual inspection
of MJ states (Fig. 9) shows no obvious structural differences
between systems with different θ0 or between trimeric and
monomeric systems.

FIG. 9. Marginally jammed states for (clockwise from upper left)
θ0 = 0, 30◦, 60◦, 90◦, and 120◦ trimers, and monomers. Different
colors indicate different trimers, but otherwise the color of each
trimer is chosen randomly.

C. Ordering within marginally jammed states

To better isolate the origin of the trends shown in Fig. 8, we
will examine monomer-monomer positional correlations at
the two-, three-, and four-body levels. Figure 10 illustrates the
character of these correlations in selected systems’ MJ states.
Figure 10(a) shows the total pair correlation function g(r).
The most striking feature is the sharp peaks at r = d13(R, θ0),
where d13(R, θ0) = 2R cos(θ0/2)σ is the distance between a
trimer’s end monomers. Another noteworthy feature is that
g(r) is nearly independent of θ0 for r > 2σ despite the sys-
tems’ very different densities. The slight differences for r >

2σ—more prominent maxima and minima for systems with
larger φJ—are consistent with these systems’ slightly greater
order.

Figure 10(b) shows the intermolecular contribution to the
pair correlation function [ginter (r)]. The absence of clear peaks
at r = √

2σ and r = √
8/3σ (which are, respectively, the

second-nearest-neighbor distances in FCC and HCP lattices)
for all θ0 indicates that even locally close-packed order is
strongly suppressed in these systems. Surprisingly, θ0 = 0
systems (which have the lowest φJ and broadest distribution
of void and Voronoi volumes) also have the sharpest peak in
ginter (r) of any of our representative systems; this peak occurs
at r � √

3σ and will be discussed further below. Otherwise,
the most prominent θ0-dependent differences are for 1.2 �
r/σ � 1.6. Systems with lower φJ have larger ginter (r) in this
range, indicating that the distinction between monomers’ first
and second coordination shells is sharper for systems with
higher φJ .

Figure 10(c) shows the probability distribution P(θ ) for the
angles

θ = cos−1

( �bi j · �b jk

bi jb jk

)
(11)

formed by contacting i- j-k triplets that do not all belong to the
same trimer [43]. Here �bi j = �r j − �ri and �b jk = �rk − �r j , where
(�ri, �r j, �rk) are the positions of monomers i, j, and k, and the
pairs (i, j) and ( j, k) are each in contact, i.e., bi j and b jk are
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FIG. 10. Local structure of marginally jammed states. Panels
(a–b) show the pair correlation function g(r) and its intermolecular
contribution ginter (r). Panels (c–d) show the probability distributions
P(θ ) and P(�) for the contact and dihedral angles formed by i- j-k
triplets and i- j-k-l quadruplets. Both P(θ ) and P(�) are normalized
so that P = 1 for randomly configured systems.

each �σ . The sharp peaks in P(θ ) for θ0 � 60◦ and 120◦
correspond to small three-sphere subunits of the triangular
lattice, e.g., closed equilateral triangles have θ0 = 120◦. Sur-
prisingly, the peak at θ0 = 60◦ is sharpest for θ0 = 0 trimers;
this feature will be associated with these systems’ distinctive
ginter (r) below. Triplets forming three sides of a square are
far less common. The peak in P(θ ) at θ = 90◦ is prominent
only for θ0 = 90◦; in these systems, each trimer automatically
forms three sides of a square, and another monomer (which
belongs to an intertrimer triplet and hence gets counted in
P(θ ) [43]) often completes it.

Figure 10(d) shows the probability distribution P(ψ ) for
the dihedral angles

ψ = atan2[((�bi j × �b jk ) × (�b jk × �bkl )) · b̂kl ,

× (�bi j × �b jk ) · (�b jk × �bkl )] (12)

formed by contacting i- j-k-l quadruplets [44]. Here �bi j and
�b jk are as defined above, and �bkl = �rl − �rk , where �rl is the
position of monomer l . The pairs [(i, j), ( j, k), and (k, l )]
must be in contact, i.e., bi j, b jk, and bkl must each be � σ .
The peaks at |�| = 54.7◦, 70.5◦, and 109.5◦ have been pre-
viously observed in MJ configurations of monodisperse hard
spheres [45] and flexible tangent-sphere polymers [46]; they
indicate locally tetrahedral and/or polytetrahedral ordering.
θ0 = 0 trimers have a sharp peak at |�| = 180◦ that the other
systems lack. This peak corresponds to planar trans conforma-
tions [44] and indicates that straight trimers have a tendency to
form locally planar structures even though they remain disor-
dered. Other noteworthy θ0-dependent differences are that the
peaks corresponding to tetrahedral quadruplets are sharpest
for θ0 = 90◦ and 120◦. The peak at |�| = cos−1(1/3) �
70.5◦ is particularly sharp for θ0 = 120◦ because these trimers
automatically form three-fourths of an ideal tetrahedron; this
commensurability with polytetrahedral order may be one rea-
son why θ0 = 120◦ maximizes φJ .

Taken together, the results in Fig. 10 identify three motifs
present in close-packed crystals that are particularly relevant
to bent-core trimers’ MJ states. These motifs are shown in
Fig. 11. The leftmost is formed by two aligned straight triplets
that occupy a small subset of a 2D triangular lattice; the
distance between the blue monomers is

√
3σ . This motif

is particularly prevalent in θ0 = 0 systems because straight
trimers can easily form the above-mentioned aligned triplets;
its prevalence produces the strong peaks in ginter (r) at r =√

3σ , in P(θ ) at θ = 60◦, and in P(�) at |�| = 180◦. The
middle motif, known as the triangular bipyramid, is typical
in HCP crystals; the distance between the blue monomers

FIG. 11. Favored and disfavored close-packed motifs in
marginally jammed states of bent-core trimers: aligned straight
triplets, triangular bipyramid, octahedron.
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is
√

8/3σ � 1.63σ . Surprisingly, this motif is strongly sup-
pressed in MJ states for all θ0 despite the fact that the two blue
monomers can form a triplet [with θ = cos−1(1/3)] with any
of the red ones. The rightmost motif, the octahedron, is formed
by pairs of second-nearest neighbors in a FCC lattice together
with the four spheres that contact them both; the distance
between the blue monomers is

√
2σ . Given that the triangular

bipyramid is not found in FCC lattices and the octahedron
is not found in HCP lattices, these motifs are presumably
suppressed by the same competition between FCC and HCP
ordering that inhibits crystallization in athermal compression
of monomers [47].

D. Effect of concavity

Concavity is well known to promote jamming by increas-
ing particle interlocking—the influence of a monomer that
contacts two bonded monomers belonging to a different grain
increases with increasing R [48,49]. In contrast, a recent
experiment [20] has shown that closed R � 0.4 trimers pack
remarkably efficiently; their disordered jammed states have
φ � 0.73. Here we examine the effect of concavity on trimer
jamming in greater detail by contrasting our above results for
tangent-sphere trimers to those for overlapping-sphere trimers
with R < 1. For 1 − R � 1, each trimer’s excluded volume is

vtri(R, θ0) =
{

3vmon − 2vl (R), θ0 < θov(R)

3vmon − 2vl (R) − vl [d13(R, θ0)], θ0 � θov(R)
,

(13)

where the volume of each monomer is vmon = πσ 3/6, the vol-
ume of the lenses formed by overlapping spheres separated by
a distance r < σ is vl (r) = (πσ 3/12)(1 − r/σ )2(2 + r/σ ),
and trimers’ end monomers overlap only for θ0 � θov(R) ≡
2 cos−1[1/(2R)]. Here we study systems with R = 0.856,
which matches the ratio of bond length to bead diameter in
the widely used Kremer-Grest bead-spring polymer model
[50], is known to strongly inhibit crystallization, and has
θov = 108.526◦.

Results for the rate-dependent φJ (θ0, R) are shown in
Fig. 12. Two effects of increasing monomer overlap (decreas-
ing concavity) are immediately apparent. First, the φJ curves
flatten as R decreases, as they must. Second, when 1 − R � 1
(as is the case for R = 0.856), the effect of increasing overlap
is—to a first approximation—a uniform upward shift of the
φJ curves,

φR
J (θ0) = φ1

J (θ0) + s(R), (14)

where s increases with decreasing R < 1 but does not depend
on θ0. The effectiveness of Eq. 14 in describing the φJ (θ0, R)
data in Fig. 12 suggests that the decrease in bent-core trimers’
φJ with increasing R is driven primarily by the increasing
strength of monomer-dimer interlocking rather than by any
structural features that depend directly on θ0. On the other
hand, the results of Ref. [20] imply that extending the range of
validity of Eq. (14) to larger R will require replacing its s(R)
term with a term that depends on both R and θ0. It would be
interesting to examine this issue further in future work.

FIG. 12. Effect of monomer overlap on rate-dependent φJ (θ0).
Solid curves indicate results for R = 0.856 trimers, dashed curves
indicate the same R = 1 results shown in Fig. 8(a), and the gray
dotted curve indicates the best fit of the quasistatic results to Eq. (14):
s(0.856) = 0.0392.

E. Comparison to results from 2D systems

Solidification of particulate matter under athermal com-
pression is well known to exhibit a striking dependence
on spatial dimension. Monodisperse disks readily crystal-
lize, whereas monodisperse spheres typically form disordered
jammed states [38,47]. Here we discuss how spatial dimen-
sion affects athermal bent-core-trimer solidification. Figure 13
contrasts φJ (θ0) and φmax(θ0) for 2D and 3D trimers. Three
key results are apparent. First, the quenched bond-length
and bond-angle constraints produce comparable enhancement
of jamming. The values of φJ (θ0)/φcp averaged over all θ0

are 0.853 in two dimensions and 0.803 in three dimensions.
The difference between these fractions is comparable to the
difference between the values of φmon

J /φcp for amorphous
monomeric MJ states (φmon

J /φcp � 0.92 in two dimensions,
0.86 in three dimensions [30]). Second, in two dimensions

FIG. 13. Effect of spatial dimension on dense-packing and jam-
ming of tangent-sphere trimers. Solid curves show φJ (θ0 ) for qua-
sistatic compression, and dashed curves show φmax(θ0). The 2D
results are from Ref. [21]; results for φJ (θ0 ) are averages over nine
independent samples with ntri = 400. Packing fractions are scaled by
their values for close-packed crystals [π/(2

√
3) in two dimensions,

π/
√

18 in three dimensions].
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trends in φJ (θ0) track those in φmax(θ0) throughout the full
range 0 � θ0 � 120◦, while in three dimensions they do not.
In particular, 3D straight trimers (θ0 = 0) can close pack yet
produce the global minimum in φJ (θ0). This difference arises
partially from the D-dependence of crystallizability; θ0 = 0
trimers form MJ states possessing a moderate degree of crys-
talline order in two dimensions [21], but in three dimensions
their MJ states are maximally disordered as discussed above.
Third, in both two and three dimensions, compactness and
symmetry promote dense packing, i.e., φJ is maximized for
θ0 = 120◦ trimers since they are subunits of the triangular
lattice.

Numerous previous studies of the jamming of anisotropic
grains have found that φJ decreases with increasing grain
aspect ratio A. Others have found nonmonotonic behavior;
for grains such as ellipses and dimers, φJ increases with
increasing A for small A, passes through a single maximum
at some A = A∗, then decreases with further increasing A
[40,51,52]. The results in Figs. 12 and 13 indicate that no
comparably simple explanation of the variation of φJ (θ0) in
terms of A is possible for bent-core trimers [which have
A(R, θ0) = 2R cos(θ0/2) + 1]. While their |∂A/∂θ0| → 0 as
θ0 → 0, their |∂φJ (θ0)/∂θ0| is maximized as θ0 → 0.

A more likely explanation of 3D bent-core trimers’ de-
creasing φJ (θ0) as θ → 0 is the decrease in their effective con-
figurational freedom as they approach linearity. Specifically,
in three dimensions the middle monomer in a bent trimer can
relax away from obstacles by rotating about the line connect-
ing the end monomers (even if the end monomers are held
fixed), whereas the middle monomer in a straight trimer can-
not. Two-dimensional systems lack this rotational-relaxation
mechanism. Analogous decreases in effective configurational
freedom as “molecules” straighten (in three dimensions) have
previously been associated with decreasing φJ and increasing
Tg in model polymeric systems [42,53]. Moreover, a very
recent study [54] has shown that thermalized tangent-sphere
trimers’ Tg and fragility both increase sharply as θ0 → 0 and
are maximized at θ0 = 0, and also that their Tg is minimized
at θ0 = 120◦. All these results directly correspond (within
Liu and Nagel’s unified picture of the glass and jamming
transitions [55]) to those reported above.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we showed that simply structured bent-core
tangent-sphere trimer crystals (with bases of ntri � 2 trimers)
have maximum packing fractions above 0.97φcp for all θ0.
While excluding the possibility that denser crystals can be
found by considering lattices with larger bases would require
a proof by numerical exhaustion like that of Hales [56],
previous results for a wide variety of particle shapes [6,24]
suggest that ntri = 2 is sufficiently large to identify the crystals
reported here as (putatively) maximally dense.

We showed that incommensurability of θ0 with 3D close
packing does not by itself frustrate crystallization. Instead,
trimers are able to arrange into periodic structures com-
posed of close-packed bilayers or trilayers of triangular-lattice
planes, separated by “gap layers” that accommodate the in-
commensurability. Except for the narrow range 70.5288◦ �
θ0 � 72.4530◦, such stackings are maximally dense. In this

narrow range, the incommensurability is instead accommo-
dated by deviation of the stacked planes away from triangular-
lattice order.

Because obtaining crystalline bent-core-trimer systems in
experiments may be challenging, we contrasted their dense
crystalline packings to the marginally jammed packings they
form under athermal compression. Our results indicate that
two distinct sets of factors act in concert to promote jamming
in these systems: (1) the same factors that promote jamming in
monodisperse hard-sphere systems (e.g., the FCC-HCP com-
petition [47]), and (2) other θ0-dependent factors associated
with the quenched two- and three-body constraints inherent
to bent-core trimer structure. That set (2) always further
promotes jamming [i.e. φJ (θ0) < φmon

J for all θ0] is surprising:
although the quenched constraints reduce the dimensionality
of a system’s configuration space, a larger fraction of that
space corresponds to crystalline order if θ0 is commensurable
with close packing. Other factors, such as the decrease in
trimers’ effective configurational freedom as they straighten,
are seemingly more important than commensurability.

The dependence of granular materials’ macroscopic prop-
erties on the shape of the grains composing them has attracted
great interest over the past decade [5,6,11,18–20,52,57–59].
The results presented in this paper reinforce and extend those
of Refs. [19,20] by providing substantial evidence that bent-
core trimers are a model granular system in which both φJ and
the local ordering of jammed states can be tuned by varying a
single particle-shape parameter (θ0). Other recent experiments
that have shown how strongly grain shape influences both
elastic properties and the character of plastic deformation
[58,59] suggest that jammed bent-core trimer systems will
have intriguing mechanical and acoustic properties that can
be tuned by varying θ0.

Finally, we emphasize that in this paper we have focused
on athermal solidification, and that we expect the results
presented herein to be most applicable to dry granular sys-
tems where the grains are sufficiently large that Brownian
motion can be neglected. Very recent simulation studies of
thermalized fused-sphere systems have shown that when par-
ticle shape is held fixed, both attractive forces and diffusive
motion make thermalized systems more likely to crystallize
than their athermal counterparts [60,61]. Isolating the relative
importance of particle shape and thermalization in controlling
solidification of fused-sphere systems is a major challenge
that should be addressed by future work.
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APPENDIX: DERIVATION OF χ1(α), χ2(α), �(α), β2(θ0),
AND φmax(θ0)

Consider the polygon defined by �b1 = {1, 0, 0}, �b2(α) =
{cos(α), sin(α), 0}, and

�b4(α) = 1
2 {1, csc(α) − cot(α), csc(α)

√
2[cos(α) − cos(2α)]}.

(A1)

022903-11



AUSTIN D. GRIFFITH AND ROBERT S. HOY PHYSICAL REVIEW E 100, 022903 (2019)

FIG. 14. Schematic depiction of the polygon ABCD defined by
the vectors �b1, �b2(α), and �b4(α) [Eq. (A1)], and the relation of these
to the angles χ1(α) and χ2(α) [Eq. (3)].

Here �b4(α) is the solution to |�b4| = |�b4 − �b2(α)| = |�b4 −
�b1| = 1. This polygon, schematically depicted in Fig. 14, is
a unit tetrahedron when α = 60◦. For 60◦ < α � 90◦ (as is
the case for all of the maximally dense packings identified
in Sec. II B), it is an irregular four-sided polygon in which
two faces (ABD and ACD) are unit equilateral triangles and
the other two (ABC and BCD) become isosceles triangles
for which two sides have unit length and the other side (i.e.,
side BC) has length LBC(α) = √

2 − 2 cos(α) > 1. χ1(α) and
χ2(α) are, respectively, the inclination angles of faces ABD

and BCD, i.e., the angles between these sides’ unit-normal
vectors and the ẑ axis. Expressions for their values are given
in Eq. (3).

Recall that the total angle subtended by �b3(α, β ) as it
traverses the six circular arcs depicted in Figs. 3 and 4 (i.e.,
as β varies from 0 to 1) is, by definition, 	(α). The four
neighbors that contact the reference monomer each contribute
2χ1(α) to this total angle, and the two neighbors that do not
contact the reference monomer each contribute 2χ2(α); cf.
Figs. 2–4 and Tables I and II. Thus 	(α) = 8χ1(α) + 4χ2(α).

To obtain the exact analytic expressions for φmax(θ0) given
in Table V, we first had to obtain exact expressions for
α(θ0) and β2(θ0) to plug into Eq. (8). Fortunately, for every
family, numerical results (Fig. 5) showed that either α or β2

is constant. This reduces the problem to solving for family
IVb’s α(θ0) and the other families’ β2(θ0). We did this using
the following procedure: Suppose η(θ0) ≡ α(θ0) for family
IVb and η(θ0) ≡ β2(θ0) for all other families. Analytic ex-
pressions for η(θ0) can be obtained by examining how the
reference trimer’s covalent bond vectors �ri j and �r jk (Sec. II A)
relate to the vectors defining C. Owing to the construction
of our method, both �ri j and �r jk are always elements of the
set {±�b1,±�b2(α),±�b3(α, β )}. This means that θ0 = cos−1

(�ri j · �r jk ) can be always be written as a function of η, i.e.,
θ0 = θ0(η). For each family, we found analytic forms for θ0(η)
that matched our numerical data and inverted them to find
η(θ0). Plugging these η(θ0) into Eq. (8) yields φmax(θ0).
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