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ABSTRACT: We combine molecular dynamics simulations and
topological analyses (TA) to validate and refine a recently proposed
unified analytic model [Hoy, R. S.; Kröger, M. Phys. Rev. Lett. 2020,
124, 147801] for the reduced entanglement length, tube diameter,
and plateau modulus of polymer melts. While the functional forms of
the previously published expressions are insensitive to the choice of
the TA method and Ne-estimator, obtaining better statistics and
eliminating all known sources of systematic error in the Ne-
estimation alters their numerical coefficients. Our revised expressions
quantitatively match bead−spring simulation data over the entire
range of chain stiffnesses for which systems remain isotropic,
semiquantitatively match all available experimental data for flexible,
semiflexible, and stiff polymer melts (including new data for
conjugated polymers that lie in a previously unpopulated stiffness
regime), and outperform previously developed unified scaling theories.

1. INTRODUCTION AND BACKGROUND

Classical tube theories of polymer melt rheology1−3 describe
entanglements collectively as a mean-field phenomenon, where
entangled strands of chemical length Ne are confined to soft
tube-like regions of diameter a by “topological” constraints
arising from chains’ mutual uncrossability. However, despite
their great successes in predicting the results of rheology
experiments,4−7 they do not predict the values of their key
microscopic parameters (e.g., a and the monomeric friction
coefficient ζ) from first principles. Instead, such parameters
must be entered into the models by hand. First-principles tube
theories that do predict these parameters have been
developed,8−10 but make simplifying assumptions such as
treating entangled segments as rigid rods, and do not have a
transparent connection to chain structure on scales below
diameter a. Sliplink models offer an alternative first-principles
approach to characterizing the rheology of well-entangled
systems,11−13 and accurately predict the results of a wide
variety of experiments, but their predictions are usually
numerical rather than analytic.
A complete analytic theory of polymer rheology would

predict parameters such as Ne and a from microscopic
parameters that describe the interchain and intrachain
structure of the system, captured, e.g., by the Kuhn length K
and packing length p, or alternatively by the contour length
density λ = ρ 0, where ρ is the monomer number density and l0
is the covalent backbone bond length. An important first step
in developing such a theory was Grassley and Edwards’

prediction14 that the reduced plateau modulus G k T/K B
3

(where G = 4ρkBT/5Ne is the plateau modulus) should scale as

G
k T

K

B

3

∼ Λμ

(1)

where μ is a scaling exponent. The dimensionless quantity Λ
can be written in at least four mathematically equivalent (and
thus interchangeable) forms via the identity

p vK
K

K K
K

K

2 3
3

λ ρΛ ≡ ≡ = =
(2)

where ρK is the number density of Kuhn segments, vK is the
volume of a Kuhn segment, and p ( )K0

1ρ= − is the packing
length implicitly defined by eq 2.15 Roughly speaking, Λ is
small for “fat, flexible” chains in systems with K ≪ a and large
for “skinny, stiff” chains in systems with K ≫ a. Typical values
range from 1−10 for commodity-polymer melts to 103−105 for
F-actin solutions.15−19
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Multiplying the inverse of eq 1 by Λ yields the scaling of the
reduced entanglement length

Le

K

1∼ Λ μ−

(3)

where Le = Ne 0 is the contour length of entangled strands.
Assuming a2 = Le K and taking the square root of eq 3 yields
the scaling of the reduced tube diameter

a

K

(1 )/2∼ Λ μ−

(4)

However, while Graessley and Edwards showed that the
available experimental data were consistent with μ ≃ 2.3 and
μ ≃ 2 for semidilute and concentrated solutions,14 their
theoretical arguments did not predict the value of μ. Doing so
requires introducing a geometrically and/or physically
motivated ansatz for what constitutes an entanglement.
Four successful “traditional” scaling theories for polymer

entanglement20−25 remain in common use. Each of these
theories is based on a distinct ansatz. Lin−Noolandi
scaling20,21 assumes that there are a constant, chemistry-
independent number of entangled strands per cubic tube
diameter and predicts μ = 3. Combined with the packing
model,15 this picture accurately predicts G for flexible
polymers, i.e., for most synthetic commodity polymers.15−17

Morse scaling22 views entanglement as a binary-contact event
between a transversely thermally fluctuating chain segment of
length Le and an obliquely oriented chain segment within its
vicinity and predicts μ = 7/5 or μ = 4/3 depending on the
approximations employed.a This picture accurately predicts
the GN

0 7/5ρ∼ scaling observed in solutions of stiff
biopolymers such as F-actin.18,19 Edwards−de Gennes
scaling23,24 assumes that there are a constant number of
binary interchain contacts per entanglement and predicts
μ = 2. This picture accurately predicts the concentration
dependence of GN

0 in concentrated flexible-polymer solutions,
i.e., GN

0 2ρ∼ .14,26,27 Finally, Colby−Rubinstein scaling25

assumes that there are a constant number of binary contacts
per cubic tube diameter and predicts μ = 7/3, which correctly
describes the GN

0 7/3ρ∼ scaling found in semidilute flexible-
polymer solutions.14,26,27

The ansatzes used to derive the four theories areat least
apparentlymutually incompatible. Moreover, since each
theory is well supported by experiments in the range of Λ it
was designed to treat,15−19,26,27 none of them can be correct
for all Λ. Developing unified analytic expressions for
entanglement-related quantities that are accurate for arbitrary
Λ allows one to predict rheological properties from micro-
scopic parameters that are readily experimentally measurable,
enabling more efficient design of polymers for various specific
applications.28 Such relationships are expected to hold
irrespective of whether linear-viscoelastic stresses are domi-
nated by entropic or energetic contributions, provided systems
remain isotropic and chains are sufficiently well entangled.28−31

For example, Morse scaling22 arises from assuming that
curvature elasticity rather than entropic elasticity is responsible
for the value of the low-frequency plateau modulus G ∼ λ/Le,
but this is also captured by eqs 1−3.
As a result, several groups have attempted to unify the

traditional scaling theories. Uchida, Grest, and Everaers began

these efforts by developing32 crossover expressions for Le/lK
and a/ K :

L
c c( ) ( )e

K

2/5 2≈ Λ + Λξ ξ
− −

(5)

and

G
k T

c c

c c1 ( ) ( )
K

B

G
3 2/5 7/5

2/5 2 4/5=
Λ

[ + Λ + Λ ]
ξ

ξ ξ
− −

(6)

involving two numerical coefficients cξ and cG. These
expressions capture the crossover from the μ ≃ 3 scaling of
dense flexible-chain melts to the μ ≃ 7/5 scaling of semidilute
stiff-chain solutions and agree reasonably well with data for
systems with a very wide range of Λ.32 However, since their
theory does not include contributions associated with the
binary-contact ansatz, it neglects μ = 2 scaling. Nor does it
capture the crossover to μ = 7/3 scaling as the polymer volume
fraction (and thus ρ) decreases.
More recently, two simultaneous independent efforts have

attempted further unification. Milner proposed33 a unified
geometrical framework wherein the degree of entanglement is
predicted by binary-contact probabilities between the
structures that are responsible for entanglement. For dense
flexible-chain melts with lK ≪ a, identifying these structures as
packing blobs of diameter p predicts Lin−Noolandi (μ = 3)
scaling. As chain stiffness increases into the semiflexible (lK ≃
a) regime, p drops below the chain diameter d and (in Milner’s
picture) becomes irrelevant. When this happens, the structures
controlling entanglement switch from packing blobs to Kuhn
segments. Using the fact that binary contact between these
segments occurs as their transverse motion sweeps out an area
of size K

2 predicts Edwards−de Gennes (μ = 2) scaling. For
stiff polymers with lK ≫ a, using the fact that the probability of
observing one “near miss” binary contact event between two
entangled strands scales with the intercept area aLe times the
contour length density λ predicts Morse (μ = 7/5) scaling.
Semidilute solutions of both flexible and semiflexible polymers
are treated by identifying the entangling structures as
correlation blobs of size ξ, which predicts Colby−Rubinstein
scaling (μ = 7/3) for flexible chains and a new power law (μ =
9/4) for semiflexible chains. Thus, ref 33 describes all known
scalings of G k T/K B

3 within a single picture. It does not,
however, treat any of the (potentially broad) crossovers
between regimes with different μ.
Two of us proposed34 analytic expressions for Le/lK, a/lK,

and G k T/K B
3 that unify three of the four traditional scaling

regimes and treat the crossovers between them. Specifically, we
proposed

L N
C

c c ce

K

e
1

2
2

1
3= = Λ + Λ + Λ

∞

− − −ϵ

(7)

a
c c c

K
1

2
2

1
3= Λ + Λ + Λ− − −ϵ

(8)

and

G
k T

c c c
4
5

K

B

3

1
3

2
2

3
(1 ) 1= [ Λ + Λ + Λ ]− − − +ϵ −

(9)

where the chemistry-independent prefactors c1, c2, and c3 weigh
the contributionsb from flexible-, semiflexible-, and stiff-chain
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entanglement, and ε = 1/3 was chosen to correspond to the μ
= 1 + ε = 4/3 version of Morse’s theory. Equations 7−9 reduce
to the Graessley−Edwards predictions Le/ K ∼ Λ1−μ, a/ K ∼
Λ(1−μ)/2, and G k T/K B

3 ∼ Λμ when one of their ci-terms is large
compared to the others. In other words, they reduce to Lin−
Noolandi, Edwards−de Gennes, and Morse scaling in the
limits these theories were designed to treat.
Equations 7−9 agree quantitatively with simulation data34

for Le/ K , a/ K , andG k T/K B
3 for bead−spring polymer melts of

two different densities and chain stiffnesses spanning the entire
range for which systems remain isotropic. The values
c ( )1 0

3 2α ρ= ≃ 97.5, c ( )2 0
3β ρ= ≃ 17.9, and c ( )3 0

3γ ρ= ϵ

≃ 1.34 were obtained by fitting the higher-density melts’
topological entanglement lengths (obtained via Z1 analysis35)
to

N C C C C( )e
3 1 1 2α β γ= + +∞ ∞

−
∞
−

∞
− ϵ

(10)

where C∞ = /K 0 is Flory’s characteristic ratio.36 Here the

powers of ( )0
3 1ρ μ− and C3 2μ

∞
− arise from the identity

C( )0
3 2ρΛ ≡μ μ μ

∞ ; determining the {ci} in this fashion converts
a ρ-dependent expression (eq 10) into a ρ-independent one
(eq 7) that correctly predicted Le/lK for both densities.34 The
crossover regimes where two of the three terms in eqs 7−10
are comparable in magnitude were broad, suggesting that the
geometrical cartoons underlying Lin−Noolandi, Edwards−de
Gennes, and Morse scaling are, after all, cartoons that
oversimplify how entanglement occurs in real polymer melts.
However, ref 34 did not attempt either to account for the fact
that TA results can be highly sensitive to both the TA method
employed and the mathematical formula used to estimate
Ne

37,38 or to compare eqs 7−9 to experimental data. Nor did it
attempt to treat the crossovers to μ = 7/3 or μ = 9/4 scaling
that occur as ρ decreases.
In this paper, we resolve the first two of these three open

questions by performing molecular dynamics (MD) simu-
lations and topological analyses on a much larger ensemble of
bead−spring melts composed of much longer chains. We find
that the functional forms of eqs 7−9 are robust against
changing the TA method and Ne-estimator, provided that
pathological estimators are avoided. Then we show that
obtaining better statistical sampling and eliminating all known
sources of systematic error in the Ne estimation both alters
their c-coefficients and may allow them to be simplified by
removing the μ = 2 scaling terms, i.e., by setting c2 = 0. Finally
we show that the revised expressions quantitatively match
simulation data for L /e K and G k T/K B

3 over the entire range of
Λ for which dense bead−spring melts remain isotropic,
semiquantitatively match all available experimental data for
flexible, semiflexible, and stiff polymer melts (including new
data for conjugate polymers that lie in a previously
unpopulated Λ-regime28), and outperform all previously
proposed expressions.

2. MODEL AND METHODS

2.1. Molecular Dynamics Simulations. Our studies
employ the semiflexible variant of the standard Kremer−
Grest model.39,40 All monomers interact via the Weeks−
Chandler−Anderson potential41

U r
r r

r r( ) 4 , cLJ

12 6σ σ= ϵ − ≤
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
i
k
jjj

y
{
zzz

i
k
jjj

y
{
zzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑ (11)

where ϵ and σ are characteristic energy and length scales, r is
the intermonomer distance, and rc = 21/6σ is the cutoff radius.
Covalent bonds are modeled by using the finitely extensible
nonlinear elastic (FENE) potential42

U
k R

R( )
2

ln 1 ( / )FENE
FENE 0

2

0
2= − [ − ]

(12)

for bonds of length , where kFENE = 30ϵσ−2 and R0 = 1.5σ.
Angular interactions between three consecutive monomers
along chain backbones are modeled by using the bending
potential

U ( ) (1 cos )ang θ κ θ= − (13)

where b bcos ( )i i
1

1θ = ̂ · ̂−
+ is the angle between consecutive

bond vectors bi and bi+1. This model for semiflexible polymers,
used for decades,43,44 was shown recently by Svaneborg,
Everaers, and colleagues to accurately capture the dynamics of
a wide variety of commodity polymer melts when ϵ, σ, and κ
are mapped to SI units.38,45

We examine systems with 0.0 ≤ κ/ϵ ≤ 5.5; these span the
full range of chain stiffness for which melts remain isotropic.40

All our simulated systems are fully equilibrated melts
consisting of Nch chains of N monomers, with NchN ≃ 4 ×
105 and six different N in the range 100 ≤ N ≤ 800. Systems
were prepared and equilibrated as described in ref 46; all MD
simulations were performed by using LAMMPS.47 All results
presented below are averages over 10 independently prepared
systems (for each κ) and 21 snapshots for each system,
separated in time by the entanglement time τe(κ) (Appendix
B). At the monomer number density (ρ = 0.85σ−3) and
temperature (kBT = ϵ) employed in this study, the polymers’
Kuhn lengths are well described by46

2 / exp( 2 / ) 1
1 exp( 2 / )(2 / 1)

0.364

tanh 0.241 1.73 2.08 1

K

0

2

κ κ
κ κ

κ κ

≈
ϵ + − ϵ −

− − ϵ ϵ +
+

×
ϵ

−
ϵ

+ +
l
moo
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|
}
oo
~
oo (14)

These values correspond to the range 2.7 ≤ Λ ≤ 82 (Table 1),
which (as we will show below) is more than sufficient to
accurately capture the crossovers between the various scaling
regimes.

2.2. Topological Analyses. We characterize the entangle-
ment of these systems using two different topological analysis
(TA) methods: primitive path analysis (PPA)48 and Z1+. Both
work by fixing chain ends in space, setting all particles’
velocities to zero, and then performing a minimization process
that maintains interchain uncrossability and reduces melts to
their corresponding primitive path network.
In PPA, several changes are made to the interaction

potentials. No attempt is made to preserve self-entanglements
since their number is very small for the dense melts considered
here.49 Intrachain excluded-volume (i.e., Lennard-Jones)
interactions are deactivated, allowing chains to reduce their
contour length. Covalent bonds are strengthened by setting
kFENE = 100ϵσ−2, and the angular potential is deactivated.49

The system is then coupled to a heat bath at T = 10−3ϵ/kB to
suppress thermal fluctuations, and Newton’s equations of
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motion are integrated in the presence of a thermostat until the
chains have locally minimized their total (pair + bond)
energy.c Chains usually do not disentangle on their way toward
such a minimum because of the corrugated surface of the
bead−spring chains. This process typically requires 103

LJτ∼ to
converge to a final mean contour length Lpp per chain.
Z1+ ignores bead volume and reduces chains to their

primitive paths (PPs) without disentangling the chains by
performing various geometrical operations, reducing chains to
a series of line segments ending in “kinks” that correspond to
contacts between PPs. It uses a completely different method-
ology than Z1, which makes it computationally faster than Z1
for large systems. Specifically, Z1+ recognizes kinks by
applying an angle criterion and checking for the existence of
pairs of chains that give rise to each of the nonvanishing angles
on the shortest path, and thus provides not only Lpp, but also a
number of kinks Z for each chain, as well as the bead IDs
corresponding to binary entanglements.
The topological entanglement length (Ne

topo, the step length
of the PPs48,50) is given by37

N lime
N

e
Mtopo kink=

→∞

‐
(15)

with the N-dependent estimator

Z
N

1 d
de

M kink = ⟨ ⟩
‐

(16)

where ⟨Z⟩ is the average number of kinks per chain. Finite-N
effects can be identified and (ideally) eliminated by using this
estimator with information from a series of chain lengths. Z1
and Z1+ give nearly identical results for the PP contour
lengths, but different results for ⟨Z⟩(N). Specifically, we have
found that Z1+ gives faster convergence of e

M kink‐ with
increasing N. This feature, along with other considerations
related to kink definitions and computational efficiency,d will
be discussed in an upcoming publication.
Both PPA and Z1+ reduce the average chain contour length

from its initial value L = (N − 1) 0 [where 0 = 0.964σ −
0.967σ is the equilibrium FENE bond length] to Lpp. The

number of Kuhn segments per entanglement strand, NeK = Ne/
C∞≡ Le/ K, can be estimated by using the reinterpreted
wormlike chain formula recently proposed by Svaneborg and
Everaers:38

L

L
2 exp( 2 ) 1

2
pp

2
eK eK

eK
2=

+ − −i
k
jjjj

y
{
zzzz

(17)

where eK is determined from Lpp as a function of N, and
N limNeK eK= →∞ . Note in passing that eq 17 can be derived
from the “M-coil” Ne-estimator37 upon assuming Ne ≫ 1, Lpp
∝ N, and wormlike chain statistics for the end-to-end distance.
Then the numerically estimated rheological entanglement
length (Ne

rheo, the Kuhn length of the PPs48,50) is

N Nlim /e
N

e K
rheo SE

eK 0≡ =
→∞ (18)

Note that in general, neither PPA nor Z1+ produces unique
results for a given system; they respectively tend to sample a
range of low-lying energy minima and shortest-path minima
rather than finding a global minimum. In many cases the global
minimum is degenerate. Fortunately, this does not seem to
produce large changes in estimated Ne values, especially after
ensemble averaging as we have done here.
It is well established that topological analysis results are

dependent on both the TA method and the postprocessing
employed.35,37,49,51 For example, Ne

topo values obtained by
enumerating ⟨Z⟩ are consistently well below rheological
estimates Ne

rheo obtained from the chain statistics of PPs if
random walk statistics are assumed for the PPs (Table 1). The
accepted interpretation of this discrepancy is that primitive
paths have a finite persistence length.48 Everaers used50 a
binary-contact model to postulate N N/ 2e e

rheo topo = , and the
same ratio is predicted by slip-link models,52−54 but the
N N/e e

rheo topo obtained from molecular simulations is expected
to vary with the employed Z-algorithm and kink definition.
Substantial differences between Ne values obtained by using
estimators of the same kind also occur. Reasons for these
include primitive chain thickness,51,55 differences in the criteria

Table 1. Properties Characterizing the Semiflexible Kremer−Grest Melts Studied in This Worka

κ [ϵ] C∞ K σ[ ] p [σ] vK [σ3] ρK [σ−3] Λ Zmax Ne
topo Ne

rheo NeK a [σ] a/p Λ1/2a G k T/k B
3

0.0 1.89 1.82 0.67 2.22 0.45 2.7 19.7 37.6 80.5 42.7 11.89 17.75 10.77 0.05
0.5 2.12 2.04 0.60 2.49 0.40 3.4 27.0 28.4 58.9 27.8 10.77 18.04 9.75 0.10
1.0 2.46 2.37 0.51 2.90 0.35 4.6 39.6 20.6 41.1 16.7 9.69 18.85 8.77 0.22
1.5 2.98 2.88 0.42 3.51 0.28 6.8 25.7 14.8 28.4 9.5 8.88 20.92 8.04 0.57
2.0 3.59 3.46 0.35 4.22 0.24 9.8 35.4 10.9 20.5 5.7 8.26 23.38 7.47 1.37
2.5 4.34 4.18 0.29 5.11 0.20 14.3 45.8 8.54 15.8 3.6 7.99 27.37 7.23 3.15
3.0 5.22 5.03 0.24 6.14 0.16 20.7 55.4 7.11 13.2 2.5 8.00 32.98 7.24 6.56
3.5 6.15 5.93 0.21 7.24 0.14 28.8 63.0 6.28 11.8 1.9 8.20 39.83 7.42 12.03
4.0 7.14 6.88 0.18 8.40 0.12 38.8 68.4 5.81 11.0 1.5 8.54 48.14 7.73 20.11
4.5 8.14 7.84 0.16 9.57 0.10 50.3 72.2 5.55 10.6 1.3 8.95 57.45 8.10 30.92
5.0 9.31 8.97 0.14 11.0 0.09 66.0 74.3 5.40 10.4 1.1 9.47 69.64 8.57 47.37
5.5 10.37 9.99 0.12 12.2 0.08 81.8 75.0 5.31 10.3 1.0 9.94 81.34 9.00 66.10

aAll systems have bead number density ρ = 0.85σ−3. The bond length 0 is basically identical for all systems, weakly decreasing from 0.9648 (κ =
0ϵ) to 0.9637 (κ = 5.5ϵ). Hence, λ = 0ρ ≈ 0.82 is also approximately constant. Quantities listed here include the chain stiffness κ, characteristic
ratio C∞, Kuhn length K , packing length p, Kuhn monomer volume vK, number density of Kuhn monomers ρK, dimensionless Λ (eq 2), mean
number of kinks Zmax = ⟨Z⟩(Nmax) in our longest simulated chains (Nmax = 800 for κ ≤ 1.0ϵ and Nmax = 400 for κ > 1.0ϵ), estimated topological and
rheological entanglement lengths Ne

topo and Ne
rheo, and finally the number of Kuhn segments per entanglement NeK, tube diameter a, reduced tube

diameters a/p and Λ1/2a, and reduced plateau modulus G k T/K B
3 obtained using Ne

rheo.

Macromolecules pubs.acs.org/Macromolecules Article

https://doi.org/10.1021/acs.macromol.1c02597
Macromolecules 2022, 55, 3613−3626

3616

pubs.acs.org/Macromolecules?ref=pdf
https://doi.org/10.1021/acs.macromol.1c02597?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


used to identify contacts between PPs,35,51 energy minimiza-
tion versus contour length minimization,56 and the fact that
employing PPA can result in loosening of entanglements. The
latter does not occur in Z1+ or in the alternative TA method
CReTA.51 As we will show below, because of the neglected
bead volume, Lpp values obtained by using Z1+ tend to be
smaller than those obtained by using PPA, leading to
substantially larger predicted NeK.
Another important consideration is the mathematical

pathologies present in many Ne-estimators. Key among the
latter are systematic errors associated with finite-N effects and
the non-Gaussian statistics of primitive paths.37,38 Accurately
estimating Ne requires correcting errors of this type. For
example, although eq 17 removes the faulty assumption
present in all previously developed estimators for Ne

rheo with
the exception of the M-coil estimator described in ref 37that
primitive paths are random-walk-like between consecutive
entanglements, it suffers from a systematic N( )1− error
stemming from its improper treatment of chain ends.
Specifically, it incorrectly predicts that 0eK = for un-
entangled chains with Lpp = L. Fortunately the associated
error can be removed by extrapolating results to the N → ∞
limit.
In the following section, we will compare results for Ne

rheo

and Ne
topo to each other and to those for other previously

developed Ne-estimators and discuss the implications of any
differences between them, while devoting great care to
eliminating all systematic errors. Our ultimate aim will be to
obtain versions of eqs 7−9 that best match experimental data,
using only bead−spring data.

3. RESULTS AND DISCUSSION

Robustly testing the three relationships (7)−(9) requires
answering two prerequisite questions. First, how does one
optimally determine the dimensionless variables Ne and Λ?
Second, how does one identify the optimal fitting coefficients
c1, c2, and c3? We will focus on answering these questions in the
following sections. With answers at hand, we will be in a
position to provide analytic expressions that quantitatively
capture our coarse-grained simulation results. Critically, the
resulting expressions also quantitatively capture the available
experimental data for polymer melts and can thus be assumed
to predict results from atomistic simulation.
3.1. How to Obtain Ne. As discussed above, a key quantity

employed by Ne-estimators such as eq 17 is the average
primitive path length Lpp. We begin this section by illustrating
a nontrivial coupling between the TA method and Lpp(κ).
Figure 1 contrasts the Lpp(κ) for chain lengths 100 ≤ N ≤ 800
obtained via PPA and Z1+. As shown in Figure 1a, PPA values
of Lpp are systematically larger. This is expected since PPA
yields bead−spring-based PPs that are the same thickness as
the polymer chains, while Z1+ yields zero thickness PPs
mathematically represented as sequences of line segments.35

Geometrical intuition suggests that PPA values of Lpp should
be larger by a factor N L/( ) /e e0σ σ[ ] = [ ]. Data for

L L/ Z
pp
PPA

pp
1+ (Figure 1b) are broadly consistent with this

intuition. For example, flexible chains in the large-N limit have
L L1.0 / 1.01Z

pp
PPA

pp
1≤ ≤+ , which is consistent with their

Ne ≃ 80, while semiflexible chains with κ ≳ 3ϵ have
L L/ 1.1Z

pp
PPA

pp
1 ≃+ , which is consistent with their Ne ≃ 10 (eq

20). Figure 1b also illustrates a nonmonotonicity in L L/ Z
pp
PPA

pp
1+

it is maximized for κ ≃ 3ϵ and afterward decreases with
increasing κthat is not matched by any corresponding
nonmonotonicity in Ne. The origin of this discrepancy is
obscure; isolating it would require comparing to results for
other polymer models, which we do not attempt here.
Critically, however, the nonunity and nonmonotonicity of
L L( )/ ( )Z

pp
PPA

pp
1κ κ+ indicate that the c-coefficients in eqs 7−9

(obtained from the Ne(κ) values calculated via eq 17) have a
nontrivial TA-method dependence. Because it is not a priori
clear which TA method yields Lpp(κ) and Ne(κ) that better
predict the rheology of real polymer melts, we will attempt to
resolve this issue by using other criteria, as detailed below.
Next we explore the differences between estimates of Ne

rheo

and Ne
topo in detail. Two of us recently showed46 that

extrapolating the Svaneborg−Everaers estimator (eq 17) to
the N → ∞ limit by fitting PPA data for Lpp(κ) for all 0 ≤ κ ≤
5.5ϵ and 100 ≤ N ≤ 800 is captured by the equation

N N
b

N
( , ) ( )

( )
e e
SE rheoκ κ κ= −

(19)

where Ne
rheo and b are κ-dependent fitting parameters. This

yields46

N ( ) 80.5 70.4 tanh
1.579e

rheo κ κ= −
ϵ

i
k
jjj

y
{
zzz

(20)

Note that fractional differences between N ( )e
rheo κ and

N( , )e
SE κ were as high as 10% for N as large as 400.
Figure 2a shows ⟨Z⟩ for all systems, i.e., for all κ and N. We

find that Z1+ yields ⟨Z⟩ that are linear in N over the entire

Figure 1. TA-method dependence of Lpp. (a) Lpp(κ) for all chain
lengths employed in this study. Solid (dashed) curves show PPA
(Z1+) values of Lpp. (b) Ratios L L( )/ ( )Z

pp
PPA

pp
1κ κ+ for all N.
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range 100 ≤ N ≤ 800 for all κ. Fitting the inverse slopes
(d⟨Z⟩/dN)−1 to a function of the same form as eq 20 yields

N ( ) 37.6 32.4 tanh
1.72e

topo κ κ= −
ϵ

i
k
jjj

y
{
zzz (21)

Comparing the Ne
topo data to the Ne

rheo data yields an additional
insight about the TA-method dependence. As shown in Figure
2b, if PPA values of Lpp(N) are used to estimate N ( )e

rheo κ (via

eq 19), the ratio N N( )/ ( )e e
rheo topoκ κ decreases from ∼2.14 for κ

= 0 to ∼1.82 for 2ϵ ≤ κ ≤ ϵ before increasing again to ∼1.95
by κ = 5.5ϵ. These values deviate from Everaers’ prediction50

N N/ 2e e
rheo topo = by <10% over the entire range of κ. On the

other hand, if Z1+ values of Lpp(N) are used to estimate
N ( )e

rheo κ (via eq 19), the agreement with Everaers’ prediction
is much poorer; the ratio Ne

rheo(κ)/Ne
topo(κ) increases from

∼2.13 to ∼2.61 over the range 0 ≤ κ ≤ 5.5ϵ.
The ratio N N/e e

rheo topo is believed to be closely related to
entanglement spatial fluctuations, including the fact that the
distributions P(ne) of chemical distances between consecutive
entanglements along chains are not δ-distribution-like [P(ne) =
δ(ne − Ne)] but instead are Poisson-distributed with a width
comparable to Ne.

51,57,58 Such fluctuations have rheological

consequences, up to and including altering the prefactor of the
G k TNN B e

0 1ρ∝ − relation.53,59 This prefactor is also predicted
by some theories to increase with chain stiffness as energetic
contributions from chain bending become important.22,60 It
would be very interesting to examine the trends in
N N( )/ ( )e e

rheo topoκ κ in greater detail and relate them to trends
in P(ne), which has, to the best of our knowledge, not yet been
investigated for semiflexible bead−spring melts. Doing so,
however, is beyond the scope of this study. Throughout the
remainder of this paper, we will employ only PPA values of
Lpp(κ). We will show in section 3.4 that this choice produces
good agreement with experiments.
Despite the substantial quantitative differences between

them, the N ( )e
rheo κ and N ( )e

topo κ data, and hence eqs 20 and
21, are qualitatively very similar as illustrated in Figure 3. In

particular, they both exhibit a clear plateau for 4ϵ ≲ κ ≲ 5.5ϵ.
This plateau matches the one previously reported by Bobbili
and Milner for model concatenated ring-polymer melts.61 It
corresponds to the semiflexible regime (identified by Milner33)
where entanglement is maximal and Edwards−de Gennes (μ =
2) scaling is expected to hold. In this regime, entangled strands
roughly coincide with Kuhn segments. As chain stiffness
continues to increase, local nematic order develops and Ne(κ)
increases,34 marking the end of the regime where theories like
those of refs 20−25 and 32−34 (all of which assume systems
are isotropic) can be expected to hold. This semiquantitative
agreement of Ne-estimates obtained in very different ways
strongly suggests that the functional form of eqs 7−9 is robust.
However, Figure 3 also shows that some widely used Ne-

estimators produce qualitatively different and misleading
trends for semiflexible chains. For example, results for the
modified S-coil-estimator37

N
L

R
( 1) 1e

mSc pp
2

ee
2

1

= −
⟨ ⟩

⟨ ⟩
−

−i

k

jjjjjj
y

{

zzzzzz
(22)

where Ree
2⟨ ⟩ is chains’ average squared end-to-end distance,

lack the above-mentioned plateau, instead passing through a
clear minimum at κ ≃ 4ϵ before increasing over the range 4ϵ ≲
κ ≤ 5.5ϵ. This qualitative difference arises directly from the fact
that eq 22 does not account for non-Gaussian primitive path

Figure 2. Z1+ results for entanglement and their relation to PPA
results. (a) Plot of ⟨Z⟩ vs N for all the different κ employed here.
Dashed lines are linear fits; their slopes d⟨Z⟩/dN determine Ne

topo (eq
16) because the asymptotic ⟨Z⟩ ∝ N regime (eq 15) has already been
reached at N = 100. (b) Method dependence of the ratios
N N( )/ ( )e e

rheo topoκ κ . The green and purple symbols respectively

indicate N ( )e
rheo κ values extrapolated from eq 19 by using PPA and

Z1+ values of Lpp.

Figure 3. Comparison of Ne estimates calculated by using different
methods. The dashed curves show that eqs 20 and 21 quantitatively
capture all trends in Ne

rheo and Ne
topo.
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statistics. Because its implicit assumption that primitive paths
are random-walk-like between consecutive entanglement
points (i.e., that Le ≫ K) breaks down as chains become

semiflexible, the increase in ( )e
mSc κ is spurious.

Taken together, the above results indicate that while
expressions like eqs 5−9 are robust against changing the
method used to estimate Ne, “external” criteria such as the
prediction N N/ 2e e

rheo topo = are required to determine which
method yields the c-coefficients that will best match
experimental data. Another such criterion is the observation
that Ne

rheo values better correspond to the Ne inferred from
rheological measurements of G = 4ρkBT/5Ne.

50,62 Because we
wish to obtain c-coefficients that predict the experimentally
measured G k T/K B

3 for polymer melts of a given Λ, we will use
PPA values of Ne

rheo corresponding to the green curves and
symbols in Figure 3 as our Ne estimates in all analyses
presented below.e

3.2. How to Obtain K and Λ. Next we performed an
unconstrained least-squares fit f of ln(Ne/C∞) to

C C Cln( )4 2 2α β γ+ +∞
−

∞
−

∞
− ϵ with ϵ = 2/5, where C∞ was

obtained as described below. In other words, we followed the
same procedure employed in ref 34, but with ε = 2/5 rather
than ε = 1/3. This change was made to achieve better
agreement with the experimental stiff-chain results discussed
below. Motivated by multiple discussions with colleagues and
new experimental data,28 we also performed the same type of
fit with the constraint β = 0. These fits respectively yielded the
“method 1” and “method 2” values given in Table 2. For both
methods, c ( )1 0

3 2α ρ= , c ( )2 0
3β ρ= , and c ( )3 0

3 2/5γ ρ= .
Figure 4 compares bead−spring data for Ne/C∞ and

C N4 /5 e0
3 2ρ ∞ to the corresponding analytic expressions for

L /e K and G k T/K B
3 , i.e., to eqs 7 and 9, for both fit methods.

Figure 4a shows that the three-parameter method 1 fit is clearly
better, but only slightly so, raising the question of whether the
slightly better fit justifies the inclusion of the third fitting
parameter (i.e., c2, which accounts for the contributions of μ =
2 entanglement). In fact, the method 1 and method 2
expressions for G k T/K B

3 (Figure 4b) are nearly indistinguish-
able on the scale of the plot.
While the statistical uncertainties on NeK are very small

(∼0.1%) owing to our large data sets, uncertainties on C∞ are
larger because of the ambiguities inherent to estimating it.
Here we estimated C∞ ≡ /K 0 by fitting the chain statistics to
the continuous wormlike-chain model:

R n
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where ⟨R2(n)⟩ is the mean-squared distance between
monomers separated by chemical distance n. Results are
somewhat sensitive to the range of n employed in the fits, and

alternative methods such as fitting to the discrete wormlike-
chain formula (Appendix A)

R n
n

C
C

n
C
C

( ) 1
2

1
1
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also give slightly different C∞. These effects produce
corresponding uncertainties in Λ and Ne. We believe that
both curves in Figure 4b lie within the associated statistical
uncertainties. Moreover, comparison of the bead−spring data
forG k T/K B

3 to μ = 7/5 scaling (i.e., to the brown dashed curve
in Figure 4b) indicates that our stiffer chains (κ ≥ 5ϵ) are
approaching the asymptotic Morse-scaling regime, further
suggesting that the μ = 2 terms may not be necessary.
However, since the above arguments are suggestive rather than
conclusive, we defer judgment on this issue to section 3.4.

3.3. Rationale for the Three-Parameter Model. One of
the fundamental ideas underlying μ = 3 scaling is the Lin−
Noolandi conjecture a ∝ p.20,21 This conjecture is well-
supported by experiments, which have shown a ≃ 20p for
synthetic commodity polymers.63 Multiplying eq 8 by Λ yields
a generalized Lin−Noolandi relation:

Table 2. Parameter Values for Eqs 7−10 Obtained by Fitting PPA Values of Ne to Eq 10 Using Two Different Methodsa

method α β γ c1 c2 c3

1 443 ± 6 14.2 ± 1.1 5.30 ± 0.09 257 ± 3 10.8 ± 0.8 4.75 ± 0.08
2 512 ± 13 0 6.48 ± 0.13 297 ± 7 0 5.81 ± 0.12

aThe three-parameter method 1 has unconstrained (α, β, γ), while two-parameter method 2 imposes the constraint β = 0. The fractional
uncertainties on c1, c2, and c3 are the same as the fractional uncertainties on α, β, and γ for each method.

Figure 4. Comparison of bead−spring data for the reduced
entanglement length and plateau modulus to the corresponding
analytic expressions (eqs 7 and 9) with the c coefficients given in
Table 2. The dashed lines indicating Lin−Noolandi and Morse scaling
in the asymptotic small-Λ and large-Λ limits are guides to the eye.
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a
p

c c c1 2 3
8/5= + Λ + Λ

(25)

Multiplying eq 8 by C/ ( )K 0 0
3 1/2 1/2ρ≡ ≡ Λ∞

− yields an
expression for another reduced tube diameter:

a
c c c

1

0 0
3 1

1
2 3

3/5 1/2

ρ
= [ Λ + + Λ ]−

(26)

The ( )0
3 1/2ρ − term in eq 26 makes it chemistry-dependent.

However, because ( )0
3 1/2 1/2

0ρ λ= , multiplying it by λ1/2l0
yields the chemistry-independent expression

a c c c1/2
1

1
2 3

3/5 1/2λ = [ Λ + + Λ ]−
(27)

Because λ−1 is one measure of chains’ effective cross-sectional
area,14,33 λa2 is simply the ratio of the cross-sectional areas of
tubes and individual chains.
Bead−spring data for a/p and λ1/2a can be extracted

from PPA results as follows. Using the commonly employed
definitions a L( )e K

1/2= = N C( )e 0
2 1/2

∞ and p N R( ) 1ee
2ρ= ⟨ ⟩ −

= C( ) ( )K0
1

0
2 1ρ ρ=−

∞
− ,15,21 one obtains a p C N/ e0

3 3/2 1/2ρ= ∞

and a C N( )e
1/2

0
3 1/2λ πρ= ∞ . Figure 5 compares this data to the

corresponding analytic expressions (eqs 25 and 27) for both
fitting methods. As shown in Figure 5a, both the data and the
analytic expressions for a/p increase from ∼17.5 to ∼23 over
the range 2.5 ≤ Λ ≤ 10 corresponding to flexible synthetic
polymer melts. Thus, both the data and our analytic
expressions agree with the Lin−Noolandi conjecture in this

Λ range. Remarkably, the method 1 prediction for the bottom
of this range [a(Λ = 2.5) = 17.5p] agrees nearly exactly with
the result quoted in Fetters et al.’s seminal study.15

For larger Λ, an increase in a/p is predicted, but one must
be wary of the fact that the scaling definition of the packing
length p ( )K0

1ρ[ = ]− drops far below the chain diameter σ,
which is perhaps physically unreasonable.33,64 At this point it is
worth mentioning that none of the results presented above or
below require employing the packing length. Of the four
definitions of Λ given in eq 2, p/K [with p calculated using its

scaling definition p ( )K0
1ρ= − ] has been employed most

often in the literature for historical reasons.15−17 Fortunately,
its three other definitions v/K K K K K

2 3 3λ ρΛ ≡ = = do not
suffer from comparable physical plausibility issues. Indeed,
since K0 = b2 where b is the chains’ statistical segment length,
the Lin−Noolandi conjecture can also be written as
a b( )2 1ρ∝ − , and a/p in eq 25 and Figure 5 can be replaced
by ρb2a. Doing so recasts the Lin−Noolandi conjecture in
terms of intrachain structure.
Figure 5b illustrates a feature that distinguishes the two- and

three-parameter versions of our unified theory (eqs 7−9, 25,
and 27) better than any of the above-mentioned results.
Because 0 and λ = ρ 0 = 0.82 are essentially constant in our
simulations, λ1/2a tracks a, and its minimum in the range 15 ≲
Λ ≲ 20 matches a corresponding minimum in the tube
diameter. Intriguingly, this minimum also corresponds to
maximal dominance of the μ = 2 terms in these equations.
Accordingly, the method 1 version of eq 27 quantitatively
captures the minimum, whereas the method 2 version does
not. As discussed above, Milner has identified33 μ = 2 scaling
with a Λ-regime where entangled strands coincide with Kuhn
segments. Our results suggest that the center of this regime
coincides with a minimum in the ratio of the cross-sectional
areas of tubes and individual chains. That this ratio should be
minimized when entangled strands coincide with Kuhn
segments is expected, but it had not previously been shown;
one might argue that our result provides an additional
microscopic foundation for μ = 2 scaling.
On the other hand, since (i) a is challenging to measure

directly in experiments,65−69 (ii) it remains unclear how well
the definition a L( )e K

1/2≡ describes the transverse confine-
ment of semiflexible chains,g and (iii) the method 1 and
method 2 versions of our expressions have so far agreed
semiquantitatively for all quantities other than λ1/2a, we
continue to defer judgment as to which version is optimal. In
the following section, we will attempt to resolve this issue by
comparing both versions of eq 9 to experimental plateau
moduli.

3.4. Comparison to Experiments. Uchida et al.’s
crossover expression for G k T/K B

3 (eq 6) was obtained by
using a combination of scaling arguments, bead−spring
simulation data, experimental results for flexible synthetic
polymer melts15−17 with 2 ≲ Λ ≲ 11, and experimental data
for stiff biopolymeric solutions18,19 with 3 × 103 < Λ ≲ 2 ×
105. Until very recently, no experimental data for systems in
the range 12 < Λ < 3 × 103 were available. Fortunately, Fenton
et al. have just characterized28 the rheological properties of 12
semiflexible (conjugated and/or aromatic) polymers, 9 of
which have 12 < Λ ≤ 320. On the basis of this new data as well
as the above-mentioned experimental results, they proposed a
unified expression for the reduced plateau modulus:28

Figure 5. Comparison of bead−spring data for the reduced tube
diameters a p C N/ ( )e0

3/2 1/2ρ≡ ∞ and a C N( )e
1/2

0
3 1/2λ ρ≡ ∞ to the

corresponding analytic expressions (eqs 25 and 27) with the c
coefficients given in Table 2.
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G
k T

4
5

320 6.22K

B

3
3 7/5 1= [ Λ + Λ ]− − −

(28)

This expression is equivalent to our method 2 expression

G
k T

4
5

297 5.81K

B

3
3 7/5 1= [ Λ + Λ ]− − −

(29)

apart from having slightly larger c coefficients. Specifically, as
shown in Figure 6a, eq 29 exceeds eq 28 by a nearly constant
7−8% and remains within 30% of our method 1 expression

G
k T

4
5

257 10.8 4.75K

B

3
3 2 7/5 1= [ Λ + Λ + Λ ]− − − −

(30)

over the entire range of Λ (2 ≲ Λ ≲ 2 × 105) for which
experimental data are available. In contrast, eq 6 increases
monotonically from ∼88% to ∼149% of eq 28 over this range.
The differences between eqs 6 and 28−30 can be better

understood and placed in context with previous scaling
theories by examining the “local” scaling exponent34

d G k T
( )

ln /
d ln( )

K B
3

μ* Λ =
[ ]
[ Λ ] (31)

Large |dμ*/dΛ| correspond to crossovers from one type of
scaling to another. For example, Lin−Noolandi, Edwards−de
Gennes, and Morse scaling respectively have Λ-independent
μ* = 3, 2, and 7/5, and Milner’s unified geometrical picture of

entanglement33 predicts sharp crossovers between them, i.e., δ-
function-like |dμ*/dΛ| at the crossover Λ.
Figure 6b plots the μ*(Λ) associated with the various

unified formulas. Because the ratio of eq 29 to eq 28 is nearly
constant, their μ*(Λ) values are effectively identical. Relative
to these expressions (recall that the c-coefficients in eq 28 were
determined entirely by fitting experimental data15−19,28), eq 30
has a lower μ* for Λ ≪ 10. In other words, unlike the other
expressions, it predicts μ* ≃ 2.8 at the bottom of the
experimentally relevant Λ-range. On the other hand, both eq
30 and (especially) eq 6 predict a slower crossover to the
asymptotic limΛ→∞ μ*(Λ) = 7/5 scaling. However, not
wishing to take eq 28 as gospel, we continue our analyses by
comparing these expressions directly to experimental data for
specific polymers. Eqs 6, 28, and 30 are compared to the
available experimental data in Figure 7.
Figure 7a shows that all three equations agree semi-

quantitatively with experiment for systems spanning 5 orders
of magnitude in Λ. The flexible-melt regime (2 ≲ Λ ≲ 11) is
populated by a wide variety of commodity synthetic polymers
including polyolefins, polydienes, and polyacrylics. Compared
to all of the unified theoretical expressions, the experimental
data follow μ* = 3 scaling (i.e., are accurately described by the
packing model) up to larger Λ. However, some of the apparent
disagreement may arise from a single measurement; the
outlying data point at Λ = 11 correspond to a polyethylene
(PE) sample characterized at a temperature below its Tmelt that
may have possessed some local crystalline order.63

The agreement of these theoretical expressions with
experimental data for stiff biopolymers (which have Λ > 3 ×
103) is similarly good. The experimental data generally follow
Morse scaling and are well fit by G k T/ 0.157K B

3 7/5= Λ . The
large-Λ limits of the crossover expressions are 0.128Λ7/5 (eq
28), 0.138Λ7/5 (eq 29), 0.168Λ7/5 (eq 30), and 0.195Λ7/5 (eq
6). Remarkably, eq 30 achieves the best agreement even
though it was obtained by using only bead−spring simulation
data for systems with Λ ≤ 81.
For the intermediate-Λ (25 ≤ λ ≤ 320) regime populated by

the majority of Fenton et al.’s conjugated-polymer melts,28 all
the unified expressions match the two lowest-Λ melts’
G k T/K B

3 to within <5% and overpredict the G k T/K B
3 of the

larger-Λ non-nematic meltsh by 30−60%. Note that
experimentally measuring K (and hence estimating Λ) for
these systems is challenging for several reasons, e.g., low-yield
synthesis procedures and high melting temperatures.28,72

Figure 7b quantitatively compares the various expressions to
the experimental data; the ratio shown is

G k T
G k T

( / )
( / )

K B

K B

3
th

3
exp (32)

where “th” denotes eqs 6, 28, or 30 and “exp” denotes an
experimental data point for the given value of Λ. Equation 30
agrees with experiment to within a factor of 2 for all systems,
while eqs 28 and 6 agree with experiment to within a factor of
2 for all but one and three systems, respectively. The mean and
root-mean-square (RMS) fractional deviations of the pre-
dictions from experiment for each expression are shown in
Table 3. Equation 28 has the smallest RMS deviation but the
largest mean deviation. In contrast, eq 30 has a slightly larger
RMS deviation but a much smaller mean deviation. Moreover,

Figure 6. Comparison of the various unified expressions for G K
3 /kBT:

(a) Λ-dependent ratios of the formulas; (b) their local scaling
exponents μ*(Λ) obtained by using eq 31.
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as shown above, it describes bead−spring simulation data
better than two-parameter expressions like eqs 28 and 29.

4. CONCLUSIONS
This work attempted to shed light on a topic that has been
extensively debated over the past 40 years: the influence of
molecular parameters on the plateau modulus of polymer

melts. Until very recently, the absence of experimental data in
the range 12 < Λ < 3 × 103, where the dimensionless variable

K K
3ρΛ ≡ is the scaled Kuhn segment density, presented a

barrier to further theoretical progress, but new data for
conjugated-polymer melts28 have filled in much of this gap.
Here we demonstrated that the unified analytic model
proposed in ref 34 can quantitatively predict the plateau
moduli G of flexible, semiflexible, and stiff biopolymeric melts
spanning 5 orders of magnitude in Λ and more than 6 orders
of magnitude in G k T/K B

3 , to a precision comparable to the
scatter of the experimental data, provided that sufficient care is
devoted to the evaluation of the relevant parameters in the
bead−spring melts used to parametrize the model. Our
simulation data, obtained by using a coarse-grained model
with degrees of polymerization exceeding the entanglement
lengths by an order of magnitude, turned out to allow for a
precise evaluation of the quantities that characterize entangle-
ment in the N → ∞ limit.

Figure 7. (a) Comparison of theoretical expressions for G k T/K B
3 to experimental results for flexible synthetic polymers,15−17 semiflexible

conjugated polymers,28 and stiff biopolymers.18,19 Solid curves show the various unified analytic formulas discussed in the text, while the dashed
and dotted lines respectively show fits of Lin−Noolandi and Morse scaling to the low-Λ and high-Λ experimental data. Bead−spring data for

C N4 /5 e0
3 2ρ ∞

∞ are also shown. (b) Ratios of the various theoretical predictions to experimental data for the same value of Λ. The comparison to eq
29 is not shown here because it precisely tracks the comparison to eq 28. Fractional uncertainties on the experimental G are of order 10% (cf.
section 4); the uncertainties on the measured K and hence on the experimental G k T/K B

3 and Λ may be substantially larger.28,63,71

Table 3. Statistics of the Fractional Deviations from
Experiment for the Various Unified Expressions for
G k T/K B

3 (All Values in %)a

type eq 6 eq 28 eq 29 eq 30

mean −12.6 −13.4 −7.0 2.3
RMS 27.2 21.0 22.5 25.3

aThe table provides both the mean and root-mean-square (RMS)
deviations. If one doubles all the c coefficients from our previous
work34 in eq 9 (i.e., assumes N N2e e

rheo topo≡ ), the mean and RMS
deviations of the resulting expression are −9.1% and 26.7%.
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We expressed the reduced plateau modulus G k T/K B
3 , tube

diameter a/ K , and entanglement length Le/ K in terms of Λ
and then showed that the functional forms of these unified
relations (eqs 7−9) are robust against changing the topological
analysis method and the Ne-estimator. By using properly N →
∞ extrapolated PPA values of Ne to obtain the c-coefficients,
we obtained a two-parameter expression for G k T/K B

3 (eq 29)
that agrees quantitatively with the experimental-data-based
expression (eq 28) proposed by Fenton et al.;28 our expression
has a slightly smaller mean deviation from the available
experimental data points15−19,28,63 but a slightly larger RMS
deviation. While this two-parameter model makes high-quality
predictions, we found that the three-parameter version of the
model (eq 30) better describes both bead−spring simulation
data and the available experimental data, exhibiting a
substantially smaller mean deviation and only a slightly larger
RMS deviation from experimental data. Thus, we cannot rule
out the existence of the μ = 2 scaling regime proposed by
Edwards and de Gennes23,24 and recently discussed in detail by
Milner.33 While both our results and those of ref 28 suggest
that it should be of limited relevance in practice, at least for
dense melts, more experiments on systems with 10 ≤ Λ ≤ 30
are needed to resolve this issue.
Our results have several other implications. First, we find

that simulation-based predictions better match experimental
results if the bead volume is taken into account during the
construction of the entanglement network, even though
monomer volume does not explicitly enter the theoretical
expressions for reduced entanglement-related quantities (eqs
7−9). A plausible reason for this is that monomer volume is
already encoded in the melt density, which suggests that this
situation might be different for polymer solutions. Second,
consider systems with identical Λ and identical Kuhn lengths lK
but very different microscopic interaction potentials (Appendix
A). The present analysis suggests that they should exhibit the
same plateau modulus, but this remains to be confirmed. It is
plausible that such effects, which alter melts’ microstructure
but not Λ, account for some of the scatter in the experimental
data; tests employing simulations of other coarse-grained or
atomistic polymer models could resolve this issue. Third, the
agreement between our results and the experimental data for
conjugated polymers28 is striking, suggesting that semiflexible
bead−spring polymers are well suited to modeling the
rheology of real semiflexible polymers. Fourth, while
entanglements hinder relaxation processes, and can be thought
of as revealing their nature in measurements that test
dynamical properties, our results further support the
idea48,73,74 that entanglement information sufficient to predict
polymer melts’ primary rheological properties is available from
static snapshots. Fifth, the computationally cheapest way to
study a polymer melt with N = zNe over the duration of its
terminal relaxation time, where the number of entanglements
per chain z is specified by the investigator, can be estimated by
using our two- or three-parameter models. This consideration
suggests using the bending stiffness κ ≃ 3.2ϵ for simulations
conducted at the standard Kremer−Grest melt temperature
(kBT = ϵ);39 see Appendix B for further details.
Concerning outlook, there are two very computationally

expensive tasks for polymer melts with N≫ Ne that could offer
additional support for the reported findings in the future: (i)
The fact that the same expressions capture data from
simulations and experiments implies that they also hold for

atomistically detailed models, but this has not yet been verified.
(ii) Instead of relating the plateau moduli of bead−spring
melts to their measured Ne as described above, they could
alternatively be evaluated via rheological measurements.62

Performing either of these tasks would provide an additional,
independent test of our unified analytic expressions. However,
substantial care in evaluating the simulated plateau moduli will
be necessary to ensure a useful comparison. Estimates of GN

0

for real polymer melts can vary by ∼10% based on whether GN
0

is calculated by evaluating the storage modulus G′(ω) at the
frequency ωmin which minimizes the loss modulus G″(ω),
terminal peak integration of G″(ω), the “max” method, or by
fitting their time-dependent relaxation modulus G(t) to tube
models.28,71,75 The magnitude and even the sign of fractional
differences between the GN

0 obtained using these different
methods and the GN

0 inferred from TA are likely “chemistry”-
dependent and hence will likely be affected by model-specific
factors such as the Kremer−Grest model’s lower monomer
friction and smaller local density fluctuations compared to real
or atomistic polymers. Such issues have not yet been
investigated in detail.
Finally we emphasize that our unified expressions, which

express reduced entanglement-related quantities as a function
of the Graessley−Edwards14 contour length density Λ (and no
other variables), apply only to dense melts and concentrated
solutions. In particular, since they predict μ* that increases
monotonically with decreasing Λ, they cannot predict the
crossover to μ = 7/3 scaling that occurs as the concentration of
flexible polymeric liquids is reduced into the semidilute
regime.14,25−27 Our results imply that theories which capture
this crossover (in addition to those discussed above) will need
to explicitly treat how these reduced quantities vary when the
polymer concentration is varied with Λ held fixed.

■ APPENDIX A. KUHN LENGTH AND ⟨R2⟩(n) FROM
MICROSCOPIC POTENTIALS

As we have expressed the dimensionless plateau modulus in
terms of Λ, it might be of further interest to express Λ in terms
of the microscopic interaction potentials and kBT. To
accomplish this, we need an expression for the characteristic

Figure 8. Ree
2 1/2⟨ ⟩ (blue curve), τmax (red curve), and CPU time (black

curve) vs κ/ϵ, relative to values for the flexible system (κ/ϵ = 0), for a
system with a fixed number of entanglements per chain. Note the
semilogarithmic scale. The quantities achieve their minima at κ/ϵ =
2.70, 3.63, and 3.19, respectively, indicated by the dashed lines.
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ratio /K 0 in terms of the microscopic potentials. For chains in
melts (and, more generally, ideal chains), the effect of angular
bending and torsion potentials Uang(θ) and Utors(ϕ) on lK can
be calculated analytically as follows from the 33-component of
the matrix B ≡ (1 + A)(1 − A)−1,76 i.e.

C 1 A 1 A( )( )K

0

1
33= = [ + − ]∞

−

(33)

where the matrix

c c c s s

s c

s c s s c

A 0=

⟨ ⟩⟨ ⟩ ⟨ ⟩⟨ ⟩ −⟨ ⟩

−⟨ ⟩ ⟨ ⟩

⟨ ⟩⟨ ⟩ ⟨ ⟩⟨ ⟩ ⟨ ⟩

θ ϕ θ ϕ θ

ϕ ϕ

θ ϕ θ ϕ θ

i

k

jjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzz (34)

is composed of four different averages that are evaluated via76

c i s
e sin( ) d

e sin( ) d

i U

U
0

( )

0
( )

ang

ang

∫
∫

θ θ

θ θ
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π β θ

−

−
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−

−

−
−

(36)

with β = 1/kBT. For the choice of Uang(θ) given by eq 13, and
in the absence of a torsion potential, eq 33 produces eq 23. For
the Kremer−Grest melts studied above, there is a small
excluded-volume contribution to the effective bending
potential that is only relevant for κ/ϵ < 2. It is this regime
where the fitting formula (14) clearly outperforms eq 23.
This approach also allows calculation of the bond correlation

function, which in turn allows one to write down analytic
expressions for all statistical geometrical properties such as the
mean-squared end-to-end distance ⟨R2⟩(n) for a partial chain
of chemical length n or the gyration tensor. One obtains76

R n
n

C
n

A 1 A 1 A
( ) 2

( )( )n
2

0
2

2
33

⟨ ⟩ = − [ − − ]∞
−

(37)

with C∞ already given by eq 33.
When the degree of polymerization is relatively low, rather

than employing the continuous wormlike chain model (23),
one should employ a discrete wormlike-chain with fixed bond
length 0. In this case, one starts from Uang(θ) given by eq 13.
The matrix A is then given by eq 34 with the Langevin
function c coth( / ) ( / )κ κ⟨ ⟩ = ≡ ϵ − ϵθ , ⟨sθ⟩ = (π/2)I1(k)
csch(κ/ϵ), and ⟨cϕ⟩ = ⟨sϕ⟩ = 0. Equation 37 evaluates to

R n
n

C
n

( ) 2(1 )
(1 )

n2

0
2 2

⟨ ⟩ = − −
−∞

(38)

for the discrete wormlike chain. In eq 38, C∞ =
( 1)/( 1)− + , which can be inverted to read

C C( 1)/( 1)= − +∞ ∞ , giving rise to eq 24. In this form,
the discrete wormlike-chain and freely rotating chain models
differ only in the interpretation of C∞. It can be expressed in
terms of κ/ϵ for the former, while the latter’s fixed bending
angle ϑ implies cos( )ϑ= .

■ APPENDIX B. CPU TIME
Here, using the results presented above, we estimate the
computational effort for studying a semiflexible Kremer−Grest

polymer melt with a fixed number z of entanglements per
chain, i.e., a degree of polymerization N ≈ zNe,

37 for the
duration of its terminal relaxation time τmax. While there is
some controversy about qualitative and quantitative details,77

we follow Svaneborg and Everaers38 and use τmax = 3z3τe,
Ne K eK

2τ τ= , and K K
3

LJ
3τ τ σ≈ − . To avoid finite-size effects, the

simulation cell should have a linear size L Rx ee
2∼ ⟨ ⟩ . The

number of particles is then N N Lxch
3ρ∼ , and the computing

time ∼NchNτmax/τLJ can be taken as being linear in the number
of particles. Plugging in our expressions for Ne(κ) and
R N ( )Kee

2
0 κ⟨ ⟩ ≈ ,46 τmax has its minimum at κ/ϵ ≈ 3.63

while the computing time has its minimum at κ/ϵ ≈ 3.19 for
any z. The variation of both quantities with κ is shown in
Figure 8.
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■ ADDITIONAL NOTES
aNote that the μ = 7/5 version of Morse’s theory implicitly
assumes that a Le

3λ∝ .
bAs mentioned in ref 34, our use of the term “contributions” is
not an indication that the terms in eqs 7−9 proportional to c1,
c2, and c3 represent three mechanisms of network elasticity that
can act independently; in fact, there is no test that can
determine whether a given entanglement is flexible, semi-
flexible, or stiff.
cThe heat-bath coupling is achieved by using the LAMMPS
Langevin thermostat with damping time τLang = 10τLJ, and the
MD time step employed is Δt = τLJ/200.
dFor example, the integral part of both Z1 and Z1+ consists of
simultaneously considering a pair of adjacent bonds (directed
PP segments). In Z1+ the length of both bonds and the
orientation of one bond are continuously adjusted. The
modification minimizes the sum of the two bond lengths,
subject to the constraint that bonds belonging to different
chains do not cross each other. In Z1, both bond lengths and
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orientations are varied simultaneously. Note also that Z1+ is
much faster than PPA. On one typical modern CPU core,
reducing a melt sample (of the size studied in this paper) to its
primitive path mesh takes ∼30 s using Z1+, in contrast to ∼104
s using PPA.
eYet another option, by using Ne

topo values multiplied by a
constant (e.g., 2), is going to be explored elsewhere. See also
Table 3.
fThis logarithmic fit was chosen because it minimizes the
mean-squared fractional (rather than the mean-squared
absolute) deviation of the MD data from the fitting formula.
gSussman and Schweizer’s first-principles microscopic theory
of entangled rigid rods,8,70 which was motivated in part by this
issue, is consistent with this definition.
hData for the two melts studied in ref 28 which had G k T/K B

3

that fell well below the trendline, presumably because they
were partially nematic, are not shown in Figure 7.
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