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ABSTRACT: Using molecular dynamics simulations, we
study how chain stiffness affects how glassy polymers deform
under applied shear. Loosely entangled systems composed of
flexible chains exhibit strong shear banding and subsequent
strain softening whereas tightly entangled systems composed
of semiflexible chains exhibit neither of these. For all systems,
inflection points in stress−strain curves correspond to the
onset of chain scission, but nonlinear strain hardening
continues up to much larger strains. Tightly entangled systems
build up considerable elastic energy before fracturing via chain
scission. This causes their plastic flow to be far more
heterogeneous, and they ultimately fail along significantly sharper fracture planes than their loosely entangled counterparts,
which fail via chain pullout. We quantify these differences using modern plasticity metrics and relate them to chain-stiffness-
dependent differences in segmental packing efficiency and interchain interpenetration. It appears that the additional stress
transmission mechanisms provided by the greater covalent bond tensions present in tightly entangled systems act to delocalize
strain and promote more homogeneous deformation than is found in loosely entangled systems, but only until chain scission
begins.

1. INTRODUCTION
Experimental studies comparing the drastically different
mechanical responses of chemically different polymer glasses
have a long history.1−5 Many of the most basic features, such as
tighter entanglement promoting ductility while greater aging
promotes brittleness, are reasonably well understood. Far less
well understood, however, is how these trends relate back to
systems’ molecular architecture and microscopic interactions as
well as how they relate to differences in the character of
systems’ deformation micromechanisms.
One obstacle to obtaining better understanding of these

issues is that although polymeric systems’ entanglement density
ρe, melt plateau modulus GN

0 , and glassy strain hardening
modulus GR all scale as (lK/p)

3, where lK and p are respectively
their Kuhn and packing lengths,6−11 and it is well-known that
higher entanglement density stabilizes systems against strain
localization and brittle failure,12−14 it is difficult to relate these
trends directly to chain stiffness because variable chain thickness
(i.e., the presence of bulky side chains in some polymers but
not others) obscures the relationship between chain stiffness
and ρe.

15−18 Thus, although increasing chain stiffness usually
increases both ρe and toughness,4,5,16 counterexamples exist;
e.g., polystyrene is less entangled and more brittle than
polycarbonate even though polystrene is the stiffer polymer.
Another source of difficulty is that traditional theoretical

approaches1,13,19,20 treat systems as spatially homogeneous,
ignoring the structural heterogeneity that has since been shown
to be a key feature controlling the mechanical response of both
nonpolymeric21,22 and polymeric glasses.23−25 Thus predicting
even basic material properties such as whether a given system

will be brittle or ductile remains a focus of intense current
research interest,25−27 and theoretical design of materials with
optimized mechanical responsein particular, materials which
preferentially fail via homogeneous shearremains a largely
unrealized goal.11,28

Recent years have seen a profusion of simulation studies of
the micromechanisms of glassy plasticity. Multiple metrics
characterizing the spatiotemporal structure of plastic events
have been developed and successfully related (at a predictive
level) to systems’ microstructure.21,22,29−34 However, while it
has long been known that polymer glasses’ plastic-deformation
micromechanisms depend in detail on their microstructure
(both intrachain and interchain1,3), application of these modern
plasticity metrics to improving our understanding of their
nonlinear shear response has only just begun.35

In this paper, using molecular dynamics simulations of a
standard coarse-grained bead−spring polymer model,36 we
study how the shear response of model polymer glasses
depends on chain stiffness for f ixed chain thickness. By varying
lK/p with all other system properties held fixedan operation
which is very difficult to achieve in experimentswe isolate the
role played by this critical parameter. Our results accord with
established views of how chain stiffness influences shear
deformation by controlling both segment-scale packing
efficiency and the tightness of the entanglement mesh,8,12,13

but go significantly beyond previous work by clarifying how
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these relate to systems’ heterogeneous microstructure and
heterogeneous microscale plastic deformation.

2. MODEL AND METHODS
We employ the widely used Kremer−Grest bead−spring
model,36 which has been shown to capture many features of

glassy-polymeric mechanical response.25,37 Systems are com-
posed of Nch = 500 linear chains of N = 600 monomers.
Periodic boundary conditions are applied along all three
directions of (initially) cubic simulation cells. All monomers
have mass m and interact via the truncated and shifted Lennard-
Jones potential
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where ϵ is the intermonomer binding energy, a is monomer
diameter, and rc = 27/6a is the cutoff radius. The Lennard-Jones

time unit is τ = ϵma /2 , and the MD time step employed is
δt = τ/200. All molecular dynamics simulations are performed
using LAMMPS.38

Simulations are conducted in three stages: (i) melt
equilibration at T > Tg; (ii) slow cooling to T = 0; (iii)
applied shear deformation at T = 0. In stage (i), covalent bonds
connecting consecutive monomers along chain backbones are
modeled using the FENE potential UFENE(r) = −(kR0

2/2) ln[1
− (r/R0)

2], with the standard36 parameters k = 30ϵ/a2 and R0 =
1.5a. Systems are thoroughly equilibrated39 at constant (zero)
pressure at T = Tg + 0.1ϵ/kB, with pressure controlled using a
Nose−́Hoover barostat. Note that the lower-than-usual
equilibration temperature employed here is chosen because
doing so is necessary to properly equilibrate the large-scale
chain structure (and the entanglement length Ne) for
semiflexible chains.40,43 Values of Tg for all systems are given
in Table 1.
In stage (ii), the covalent bond potential is switched to a

quartic form suitable for studies of fracture:

= + − − −U r U k r R r R B( ) ( ) ( )qu 0 q b
3

b 2 (2)

Bonds break when their length exceeds Rb = 1.3a. Following ref
45, B2 is selected by matching Uqu(r) to the first zero and the
minimum of UFENE, which sets B2 = −0.4668a. Motivated by
experimental data and previous bead−spring studies of glassy-
polymeric fracture,37,41 the ratio of the forces at which covalent
and van der Waals bonds break is set to 100 by setting kq =
9640ϵ/a4. In order to minimize the effect of slow dynamics
near the glass transition on the low-T mechanical properties

that are our primary interest, all systems are cooled from T = Tg
+ 0.1ϵ/kB to T = Tg − 0.1ϵ/kB at a very slow rate (|Ṫ| = 10−6/τ)
before continuing cooling to T = 0 at |Ṫ| = 10−5/τ. This
protocol produces fairly well-aged46 glasses that can exhibit
significant strain softening47,48 and hence should readily shear
band if the constituent chains’ intrinsic properties (i.e., their
microscopic interactions) support this.
In stage (iii), systems are sheared in the yz-plane at a

constant engineering strain rate γ ̇ = 2.5 × 10−4/τ. This rate is
low enough to be in the quasistatic regime49 where stresses vary
logarithmically with γ;̇ lower strain rates do not qualitatively
change the results presented below. To mimic experiments, the
stress along the x-direction (σxx) is maintained at zero
thoughout the deformation runs. This protocol allows volume
changes during deformation, which is critical since dilatation
has long been known to be critical in controlling shear banding
in amorphous materials.50 All systems are strained up to and
slightly beyond the fracture strain γfrac (the strain at which the
shear stress σyz is maximized).
In all stages, angular interactions between three consecutive

beads along chain backbones are modeled using the standard
potential39

θ θ= −U k( ) (1 cos( ))b bend (3)

where θi is the angle between consecutive bond vectors bi⃗ and
b ⃗i+1; here b ⃗i = ri⃗+1 − ri⃗ and ri⃗ is the position of bead i. Note that
θ is zero and Ub is minimized for straight trimers. We consider
three chain stiffnesses ranging from flexible (kbend = 0) to fairly
stiff (kbend = 4ϵ). Most previous studies have focused on kbend ≤
2ϵ.25,37,42,51 Our kbend = 4ϵ chains are well into the semiflexible
regime where lK is comparable to the tube diameter dT,
producing entanglement that is qualitatively different from that
found in flexible chains.52

The chain stiffnesses considered here are too low to produce
long-range nematic order. However, short-range nematic order
can also strongly affect mechanical properties. We characterize
such short-range order via the methods employed in ref 53.
The order parameter S is given by

δ= ̅ ̅ = ̂ ̂ −αβ α β αβS q q q b b
3
2

Tr( : ) where
1
3

(4)

Here Tr is the trace operator, the ⟨...⟩ denote averaging over all
cubic subcells of side length ∼3a and averaging of all
normalized bond vectors b ̂ = b ⃗/|b ⃗| in each such subcell, and
bα̂ and bβ̂ are Cartesian components of b ̂. In eq 4, S = 0 (S = 1)
correspond to covalent bonds being perfectly unaligned
(perfectly aligned) within each subcell. We find that in the
glassy state S ranges from ≃0.3 for flexible chains to ≃0.45 for
kbend = 4ϵ chains, with only a very weak T-dependence. This
indicates thatas expectedneighboring covalent backbones
are more aligned for stiffer chains. However, the magnitude of
this effect is small. It only becomes large when midrange
nematic order (order over distances ≳ 2a) develops, i.e., for
kbend ≳ 5ϵ.53 Thus, we claim that the differences in systems’
mechanical response reported below have little to do with
differences in their nematic order. We have also verified that all
systems remain amorphous; i.e., increasing kbend does not
produce any long-range positional order.
We quantitatively characterize plastic deformation during

stage (iii) using Falk and Langer’s nonaffinity measure Dmin
2 .29

For each monomer i, Dmin
2 is defined as the local deviation from

Table 1. Glass Transition Temperatures and Statistical
Properties of Chains at T = 0a

kbend/ϵ kBTg/ϵ C∞ Ne

0 0.37 1.74 70
2 0.47 5.31 15
4 0.60 6.89 14

aThe entanglement length Ne is obtained by primitive path analysis
(PPA).10 These values of Ne are slightly smaller than those reported in
the literature for kBT = ϵ,10,44 but are consistent with the idea that
entanglements in the glassy state are inherited from the T ≃ Tg
supercooled melt1 and reflect the fact that for our chosen Ub(θ) chains
straighten with decreasing T (which in turn decreases Ne

43).

Macromolecules Article

DOI: 10.1021/acs.macromol.8b00651
Macromolecules 2018, 51, 4370−4380

4371

http://dx.doi.org/10.1021/acs.macromol.8b00651


affine deformation of the monomer’s “neighborhood” (the set
of all ni monomers j such that |rj⃗ − ri⃗| < rc) over the strain
interval [γ ̅ − Δγ,̅ γ]̅, i.e., over the tensorial strain increment Δγ:̅

γ

δ γ γ

= ∑ ∑ ⃗ ̅ · ̂

−∑ + Δϵ ⃗ ̅ − Δ ̅ · ̂
α α

β αβ αβ β

−
=

Δϵ̅

D n r u

r u

min[( [ ( )

( )( ( ) )])2]
i i j

n
ji

ji

min,
2 1

1
i

(5)

Here α and β denote the Cartesian directions x, y, z, uα̂ is the
unit vector along direction α, and rj⃗i = rj⃗ − ri⃗. Δγ ̅ is the strain
occurring over the applied shear strain increment Δγ = 5 ×
10−3; this increment is small enough that multiple plastic
rearrangements of a single region rarely occur. As in ref 29,
plastic deformation is quantified by finding the tensorial strain
increment Δϵ ̅ that minimizes Dmin,i

2 . In general, Δϵ ̅ ≠ Δγ,̅ and
the degree of nonaffinity has been shown in many studies (e.g.,
refs 22, 29, 32, and 35) to correlate well with the degree of
plastic activity.

3. RESULTS
Figure 1a shows the stress−strain curves σyz(γ) for all systems.
Results at small strains are consistent with many previous
studies; an elastic response at small strains is followed by
yielding, plastic flow, and strain hardening that becomes more
dramatic (nonlinear) as γ increases.40 This degree of non-
linearity is far greater for the more tightly entangled
semiflexible-chain systems due to the same factors discussed
elsewhere (e.g., in refs 54−56); stretching of chains between
entanglements both stores energy and increases plastic activity.
The σyz(γ) curves have inflection points (switch from concave-
up to concave-down) at characteristic strains γinfl(kbend) (Table
2) that decrease strongly with increasing chain stiffness.42 At
larger strains, stress continues to increasealbeit with negative
d2σyz/dγ

2until systems fracture at γ ≃ γfrac. As expected,
values of γfrac also decrease strongly with increasing chain
stiffness. Note that the slow stress decrease shown for γ > γfrac is
an artifact of the periodic boundary conditions (PBCs)
employed here. PBCs are well-known to artificially suppress
catastrophic failure, but eliminating this effect by making
systems nonperiodic along one or more directions produces
spuriously large surface effects for all currently computationally
feasible system sizes. Thus, we focus on γ ≲ γfrac for the
remainder of this paper.
As expected,42,51 the inflection points in σyz(γ) correspond

closely to the onset of bond scission. Figure 1b shows the
fraction of broken covalent bonds f brok(γ) for the same systems.
f brok(γ) is small for γ < γinfl and then rises sharply until systems
fracture. Figure 1b also shows that the ultimate fraction of
broken bonds grows sharply as chain stiffness increases and that
the qualitative behavior of f brok(γ) in kbend ≥ 2ϵ systems is
different from its behavior in flexible-chain systems. For kbend ≥
2ϵ, the bond scission rate df brok/dγ peaks at γ ≃ γfrac, indicating
that chain scission is the primary failure mode in these systems.
In flexible-chain systems, no such peak in df brok/dγ is present.
Instead, df brok/dγ increases at γ ≃ γfrac. We will show below that
this occurs because these systems are failing via chain pullout.
Figure 1c shows systems’ fractional volume change V(γ)/V0

− 1 during the deformation. All systems increase their volume
during deformation by expanding along the transverse (x)
direction. However, these increases differ strongly in both kind
and degree. Dilatation has long been associated with shear
banding.13,50 Here, flexible-chain systems dilate relatively
rapidly at low strains. This stronger dilatation leads to the
more dramatic yielding at γ = γyield shown in the inset of panel

Figure 1. Basic features of mechanical response: (a) shear stress σyz,
(b) fraction of broken bonds, (c) fractional volume change, and (d)
principal stress difference [σ1 − σ2] as a function of nominal shear
strain γ for three different chain stiffnesses. Red, blue, and green
respectively indicate data for systems with kbend/ϵ = 0, 2, and 4.
Vertical dotted lines indicate the onset of bond scission at γ = γinfl for
each kbend, while vertical solid lines indicate the fracture strains γfrac.

40

The insets to panels a and c highlight the response in the small-strain
regime, and the dashed magenta curves in panel d show fits to the
eight-chain model (eq 6).
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a; we will show below that these trends are associated with
formation of a “sharp” shear band. In contrast, intermediate-
flexibility (kbend = 2ϵ) systems deform at nearly constant
volume prior to yielding, but dilate more strongly in the strain-
hardening regime, while stiffer (kbend = 4ϵ) chains exhibit much
weaker dilatation. These differences are consistent with the lack
of clear yielding and strain softening in these systems and
suggest that their deformation is more homogeneous (at least

for γ ≲ γyield). Below we will relate these differences to
differences in systems’ strain localization and fracture micro-
mechanisms in much more detail.
The eight-chain model of Arruda and Boyce57 has long been

used to model glassy-polymeric deformation because it is
mathematically simple yet can accurately capture stress−strain
relations (including the nonlinear-hardening regime) for a wide
variety of deformation modes.57,58 It predicts the stress
difference between the principal stress components σi and σj
to be

σ σ τ λ λ− = + −
−

G
h

h
( )

3
( )i j ij i j

flow
R

1
2 2

(6)

where τij
flow is a plastic flow term, GR is the strain hardening

modulus, λi and λj are the principal stretches along directions i
and j, h = λchain/(Ne/C∞)

1/2 where λchain = [(λ1
2 + λ2

2 + λ3
2)/

3]1/2 describes the increase in chains’ mean end−end distance
⟨Ree

2⟩1/2 during deformation, and −1 is the inverse Langevin
function.57 Neglecting the small volume changes shown in

panel c, the principal stretches are λ γ γ= + +( 4 )/21
2 ,

λ γ γ= + −( 4 )/22
2 , and λ3 = 1. Stress is purely tensile

along the λ1-axis and purely compressive along the λ2-axis; see
Figure 3a for a schematic diagram of how these relate to our
simulation geometry. In our simple shear deformation protocol,
the stress tensor σ̅ has only four nonvanishing components: σyy,
σzz, and σyz ≡ σzy. The two principal stresses (i.e., the stresses
along the above-mentioned principal stretch directions 1, 2) are
given by

σ σ σ σ σ σ= + ± − +( )/2 ( ) /4yy zz yy zz yz1,2
2 2

(7)

Figure 1d shows the stress differences [σ1 − σ2](γ) together
with fits to the eight-chain model for all systems. The fit
parameters τ12

flow, GR, and Ne are given in Table 3. As in previous
studies,9,11,55 the fit values of Ne are in general inconsistent with
those obtained from rheological measurements and topological
analyses. Nevertheless, if the fits are restricted to the strain
range γyield < γ ≤ γinfl, eq 6 quite accurately captures the shape
of the stress−strain curves. The dashed magenta curves in
Figure 1d are fit over this range but are extended to larger γ in
the plot to illustrate how the breakdown of the eight-chain
model nicely coincides with the onset of bond scission. Since
the character of the stresses in the different systems considered
here become quite different for γ ≫ γyieldfor example, the
stresses associated with bond tension grow large in tightly
entangled semiflexible-chain systems but not in loosely
entangled flexible-chain systems56the success of the eight-
chain model57,58 in capturing the shapes of stress−strain curves
over such a wide range of γ is rather remarkable.
The three systems considered here fracture at very different

stress and strain levels. One way of comparing them on a more
equal footing is to plot their mechanical response in
appropriately scaled fashion. Figure 2a shows the shear stresses
σyz scaled by their maximum values σmax = σyz(γfrac) and plotted
against the scaled shear strain γ/γcrit. Here γcrit is the strain at
which initially Gaussian chains of characteristic ratio C∞ and
entanglement length Ne (with uniformly spaced entanglements
and no chain slippage during deformation) pull taut. Its value
for each system is given by the solution to the equation

λ γ λ γ λ γ+ + = ∞N C( ) ( ) ( ) 3 /1
2

crit 2
2

crit 3
2

crit e (8)

Table 2. Characteristic Strains γyield, γinfl, γfrac, and γcrit for
Simple Shear Deformation at γ ̇ = 2.5 × 10−4/τ40

kbend/ϵ γyield
a γinfl γfrac γcrit (eq 8)

0 0.104 7.22 9.57 10.85
2 0.154 2.22 3.18 2.34
4 0.154 1.49 2.24 1.76

aValues of γyield are identified by finding the strains at which dσyz/dγ is
zero (for flexible chains) or locally minimal (for semiflexible chains).

Table 3. Fit Parameters to the Eight-Chain Model (Eq 6)
Obtained from the Stress−Strain Curves Shown in Figure 1d

kbend/ϵ τ12
flow (ε/a3) GR (ε/a3) Ne

0 1.745 0.223 136
2 1.274 1.197 22
4 1.261 1.176 16

Figure 2. Scaled stress−strain curves. Red, blue, and green respectively
indicate data for systems with kbend/ϵ = 0, 2, and 4. (a) The same
results as in Figure 1a, but with strains scaled by γcrit(kbend) (eq 8;
Table 2) and stresses scaled by the maximal values σyz

max = σyz(γfrac). (b)
The corresponding results for crazed systems where crazing is induced
by uniaxial-strain extension. For this protocol, γ is uniaxial stretch, and
γcrit = 10.9, 2.5, and 2.0 for kbend = 0, 2ϵ, and 4ϵ.
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for the above-mentioned principal stretches (λ1, λ2, λ3).
The scaled stresses for tightly entangled, semiflexible-chain

systems evolve similarly with increasing scaled strain; both
systems fracture at γ ≃ 1.1γcrit. A uniformly cross-linked
network of Gaussian chains would fracture at γ ≃ γcrit, shortly
after chains pulled taut. Real networks can be deformed to
slightly higher strains without fracturing because of strand
dispersity,59,60 and in uncrosslinked glasses, further deformation
is allowed by chain slippage. Note that the γcrit values predicted
by eq 8 may underestimate the strain at which chain tension
starts increasing ahead of fracture in kbend ≥ 2ϵ systems because
the end−end vectors of successive entangled segments are
finitely correlated in these tightly entangled systems, providing
an additional stress-relief mechanism.52,60 This is a subtle issue
because eq 8’s assumption that chains are Gaussian at chemical
distances n = Ne is only valid when Ne ≫ C∞ (and as indicated
in Table 1, this is not the case for our kbend ≥ 2ϵ systems).
Nevertheless, it is clear that our kbend ≥ 2ϵ systems behave
roughly like cross-linked networks; chains pull taut between
entanglement points and then undergo scission. Flexible-chain
systems, however, behave quite differently, fracturing at γ ≃
0.8γcrit. This is consistent with the argument given abovethat
flexible-chain systems fail via chain pullout rather than
scissionand we will support it further below.
First, however, we will compare the results for shear shown

in Figure 2a to their counterparts for crazing. The competition
between crazing and shear is critical to understanding glassy-
polymeric fracture and is closely associated with these systems
brittle−ductile transition.1,4,28,37 Figure 2b shows scaled stress−
strain curves for crazing simulations wherein systems are
extended uniaxially along the y direction at a rate γ ̇ = 2.5 ×
10−4/τ (where now γ = Ly/Ly

0 is the uniaxial stretch rather than
the shear strain) with their transverse dimensions held
constant.41 The larger values of γfrac/γcrit for crazing are
consistent with experimental trends;4 they arise from crazing’s
much more dilatative character, which allows for much greater
chain slippage. More importantly in our present context, since
the qualitative trends for craze failure are the same as they are
for shearless-entangled systems fail via chain pullout, at
considerably lower values of γ/γcritthey should also remain
the same under more general deformation protocols where
crazing and shear can compete.4,5,37

The chain-stiffness-dependent differences discussed above
can be elucidated by visualizing how deformation does (or does
not) localize during shear. Figure 3 shows snapshots of the 5%
most damaged (highest Dmin

2 ) monomers for flexible and kbend =
4ϵ systems at various strains. Panels b and c show results for γ =
γyield. The flexible-chain system has a sharply defined shear band
extending across the system, nearly parallel to the xy-plane.
This shear band is clearly associated with the distinct yielding
and strain softening shown in Figure 1a. In contrast, the tightly
entangled kbend = 4ϵ system shows no such shear banding.
Instead, its plastic damage is diffuse and appears to be
concentrated in the low-modulus, low-activation-energy “soft
spots” discussed in many recent studies.21,30,31,62−64

Panels d and e show results for γ = γfrac. The tightly entangled
system fails at a sharply defined fracture plane. This highly
damaged region possesses a much higher fraction of broken
bonds than the surrounding, less damaged region. Excess bond
scission in this region shortly prior to fracture causes more load
to be borne by the remaining bonds, further increasing their
scission rate and producing a local mechanical instability that
leads to rapid catastrophic failure at the fracture plane. This
picture is not novelit is consistent with the standard view of
chain-scission-dominated fracture1but it provides a useful
contrast to the very different behavior of loosely entangled
systems. The much larger values of γcrit in loosely entangled
systems allow chains to become far more aligned prior to the
onset of bond scission. Greater chain alignment is well known
to reduce interchain friction in entangled polymer melts (see
e.g. refs 65 and 66), and recent work has suggested that it also
increases the effective tube diameter.67 These factors in
combination with these systems’ greater dilatation (Figure
1c) strongly favor chain pullout over chain scission. As
illustrated in panel e, failure of flexible-chain systems is not
localized along a fracture plane but instead is rather
homogeneous. This is consistent with the fact that chain
pullout is a much less violent process because it occurs through
breaking of van der Waals rather than covalent bonds. As such,
chain pullout under applied shear deformation does not appear
to induce the sort of sharp mechanical instability that favors
strong strain localization.
A deeper understanding of such effects can be gained by

examining how the statistical properties of plastic damage
evolve during deformation (Figure 4). Panel a shows the mean

Figure 3. Spatial structure of plastic activity: (a) The shear geometry and principal strain directions. Note that the angle between the direction (λ ̂1)
and the shear (xy) plane is α = tan−1(2/γ), while λ ̂1 and λ ̂2 remain perpendicular for all γ.5 (b−e) The 5% most damaged (highest Dmin

2 ) monomers
for (b) kbend = 0, γ = γyield; (c) kbend = 4ϵ, γ = γyield; (d) kbend = 4ϵ, γ = γfrac; (e) kbend = 0, γ = γfrac. Panel e is rotated to illustrate the fact that in there is
no “fracture plane” of highly damaged atoms spanning the system. In panels b−e, monomers belonging to different chains are assigned different
colors. Images were created using VMD.61
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damage ⟨Dmin
2 (γ)⟩ for all systems. In all cases, ⟨Dmin

2 (γ)⟩ is
roughly proportional to the macroscopic shear stress σyz(γ) and
more closely proportional to its dissipative component σyz

diss(γ).
The large fluctuations are present because the low-temperature
limit we are considering here produces the avalanche-like
plasticity common to all low-T glasses.22,34 Similar trends have
been observed for other deformation protocols such as uniaxial-
stress and plane-strain compression.55 Note that these
fluctuations strengthen as strain rate decreases but are strongly
suppressed as temperature increases.68 It will be interesting in
future work to see how such temperature- and rate-dependent
effects couple to chain-stiffness effectsparticularly since the

strong strain-rate dependencies observed in experimental
studies of shear fracture28 imply that these couplings are strong.
Accounting for the fact that these systems’ plastic

deformation is heterogeneous provides additional insight. Panel
b shows the standard deviation ΔDmin

2 (γ) = [⟨(Dmin
2 (γ))2⟩ −

⟨Dmin
2 (γ)⟩2]1/2. At low strains, ΔDmin

2 (γ) roughly tracks
⟨Dmin

2 (γ)⟩ and σyz
diss(γ). At the onset of bond scission, however,

ΔDmin
2 (γ) begins increasing more sharply, indicating that plastic

deformation is becoming more heterogeneous. This observa-
tion is strengthened by plotting the heterogeneity measure
H(γ) = ΔDmin

2 (γ)/⟨Dmin
2 (γ)⟩ (panel c). At low strains, H(γ) is

much greater in loosely entangled systems, consistent with the
strong shear banding shown in Figure 3b. However, H(γ)
increases sharply upon the onset of chain scission at γ = γinfl.
Violent recoil from chain scission naturally leads to more-
localized plastic damage and hence the higher H(γ) for γ > γinfl.
This increase is far stronger for tightly entangled systems and
continues through fracture. All trends are consistent with the
more localized fracture observed in these systems (Figure 3d).
Next, in the spirit of many recent simulation studies of both

nonpolymeric and polymeric glasses,21,22,30−33,64 we attempt to
relate the heterogeneity of these systems’ plastic shear response
to their structural heterogeneity. Since the long-standing
assumption50 that increasing local free volume eases shear
deformation (and particularly shear banding) suggests that
monomers with larger Dmin

2 should preferentially have higher

Figure 4. Statistical measures of plasticity. Red, blue, and green
respectively indicate data for systems with kbend/ϵ = 0, 2, and 4. (a)
The mean nonaffinity ⟨Dmin

2 (γ)⟩ measured over strain intervals δγ =
0.005. (b) The standard deviation ΔDmin

2 (γ) of this measure. (c) The
heterogeneity H(γ) = ΔDmin

2 (γ)/⟨Dmin
2 (γ)⟩ of this measure. As in

Figure 1, vertical dotted lines indicate γ = γinfl while vertical solid lines
indicate γ = γfrac. Note that the large “noise” in all panels is the result of
the avalanche-like plasticity typical22,34 of glasses deformed at low T.

Figure 5. Connections between heterogeneous structure and
heterogeneous plasticity. Red, blue, and green respectively indicate
data for systems with kbend/ϵ = 0, 2, and 4. (a) Voronoi volume
distributions P(v). (b) Nonaffinity distributions P[log(Dmin

2 )]. Both
panels show results for γ = γyield (dotted curves), γ = γinfl (dashed
curves), and γ = γfrac (solid curves); panel a also shows results for
undeformed systems (dash-dotted curves).
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Voronoi volumes v before they rearrange, a particularly obvious
spatially heterogeneous measure to examine is the Voronoi
volume distribution.
Figure 5a shows the distributions of Voronoi volumes P(v) in

these systems. As is typical for glasses,69 the distributions are
roughly fit by

σ
= − − ⟨ ⟩ + −

*
⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠P v A

v v
f v

v
v

( ) exp
( )

2
( ) exp

v

2

2
(9)

where f(v) → 0 for v ≪ ⟨v⟩ and for v ≫ v*. The specific
functional form of f(v) is challenging to determine69 but is not
critical here. For γ ≲ γyield, the distributions are close to
Gaussian (small f(v)) and relatively narrow (small σv), albeit
wider for semiflexible systems as expected from these systems’
greater packing frustration.70 At γ ≃ γyield, the distributions
begin to broaden. In particular, the large-v contribution grows;
f(v) and v* both increase. Surprisingly, the magnitudes of these
increases for γ ≪ γinfl are comparable for flexible-chain and
semiflexible-chain systems even though the former shear-band
while the latter do not. Once bond scission begins, however,
the distributions broaden considerably more for semiflexible
systems. Specifically, the low-v cutoff of f(v) appears to soften,
and v* increases. This broadening reflects the violence of the
bond scission process; postscission recoil naturally tends to
create monomers with both low and high Voronoi volumes.
Note that scission, in addition to being more prevalent in
semiflexible systems (Figure 1b), is also more violent in these
systems because of the greater strain energy released in
individual scission events.
Figure 5b shows the distributions of Dmin

2 values at the
characteristic strains γyield, γinfl, and γfrac (Table 2). These
distributions have approximately log-normal form:

π
=

−Δ Δ
⟨ ⟩

× −
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Δ
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2
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2
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2 2
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(10)

Log-normal distributions often arise in amorphous plasticity,
e.g., in the distributions of plastic-zone activation energies and
plastic-event sizes.34,71 They are very “fat-tailed” and indicate
deformation physics dominated by rare, large, avalanche-like
slip events.34 In fits to the distributions plotted in panel b, Δ/
⟨log(Dmin

2 )⟩ increases dramatically with γ as systems’ plasticity
becomes increasingly heterogeneous.
The natural question to ask, then, is whether the trends in

P(v) and P(Dmin
2 ) with increasing shear strain are correlated and

how any such correlations couple to other chain-stiffness
effects. We calculated the Pearson’s correlation coefficient
C(Dmin

2 , v) = cov(Dmin
2 ,v)/(ΔDmin

2 Δv), where cov(Dmin
2 , v) is the

covariance of fluctuations of Dmin
2 and v while ΔDmin

2 and Δv are
their respective standard deviations, as a function of γ. C(γ)
increases with strain but remains small [C(γ) ≤ 0.1] for all
systems over the entire range 0 ≤ γ ≤ γfrac. Thus local plastic
activity correlates only weakly with local free volume. While this
lack of correlation accords with a previous study64 that found
cavitation under tensile deformation correlates only weakly
with Voronoi volume, it seems inconsistent with traditional
views19,54 of the role free volume plays in the shear deformation
of glassy polymers.
We also attempted to relate the differences in our systems’

mechanical responses to differences in other metrics such as
spatial correlations of Dmin

2

=
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correlations of fluctuations in Dmin
2 along chain backbones
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Figure 6. Additional measures of plasticity: Red, blue, and green
respectively indicate data for systems with kbend/ϵ = 0, 2, and 4. (a)
Spatial correlations of Dmin

2
fluctuations (F(r): eq 11). (b) Topological

correlations of Dmin
2

fluctuations (G(n): eq 12). (c) Topological
correlations of covalent bond tension fluctuations (K(n): eq 13). In all
panels, dotted, dashed, and solid curves respectively show results for
γyield, γinfl, and γfrac.
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and correlations of covalent-bond-tension fluctuations along
chain backbones

=
⟨ ⃗ ⃗ ⟩ − ⟨ ⟩
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T b T b T
T T

( )
( ) ( )i i n

2

2 2
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(where T = −∂[ULJ(r) + Uqu(r)]/∂r) that have proven useful in
characterizing plastic deformation.22,37,56 In eqs 11−13, n is the
chemical distance and brackets indicate averaging over all
monomers i.
Results are shown in Figure 6 and are consistent with

expectations from previous studies. For example, results for
F(r) show approximately exponential decay [F(r) ≃ F0 exp(−r/
ζ)] in the plastic-flow regime, where the length scale ζ
corresponds to the typical avalanche size and F0 is maximal at γ
≃ γyield as is typical of amorphous materials.22,34 Results for
G(n) and K(n) show increasing correlation on scales up to n ∼
Ne as systems approach fracture.41,56 These correlations have a
clear albeit gradual crossover between slow decay for n ≲ Ne
and faster decay for n ≳ Ne; note that the crossover is gradual
rather than sharp because entanglement spacings are broadly
distributed in undeformed melts and glasses60 and then evolve
during deformation.72,73

Both spatial and topological measures of plasticity [i.e., F(r)
and G(n)] are clearly much more correlated in tightly
entangled systems. This is not surprising; it merely indicates
the much greater importance of long-range intrachain stress
transmission mechanisms (e.g., covalent bond tension) in these
systems. However, it is useful to contrast the γ-dependencies of
these measures. Tightly entangled systems’ Dmin

2 is maximally
spatially correlated at γ ≃ γyield but maximally topologically
correlated at γ ≃ γfrac. This distinction indirectly supports the
notion that polymer glasses yield when their “primary
network”26,27,74 of short-ranged van der Waals interactions
fails but that in ductile polymers the entanglement network
stabilizes further relatively homogeneous deformation until
ultimate failure via chain pullout and scission.1,2

4. DISCUSSION AND CONCLUSIONS
In this paper, we examined how chain stiffness affects shear
deformation mechanisms in model polymer glasses using
modern plasticity metrics. We isolated the effects of chain
stiffness from competing chain thickness effects14,16 by studying
a model in which thickness is fixed and the critical parameter
lK/p monotonically increases with increasing stiffness. Our key
findings were as follows: (i) flexible-chain systems are more
prone to localized yielding via shear banding, while semiflexible-
chain systems exhibit more spatially homogeneous yielding
behavior; (ii) flexible-chain systems fail gradually and
homogeneously via chain pullout, while semiflexible-chain
systems fail violently at well-defined fracture planes via chain
scission; (iii) the heterogeneity of systems’ plastic deformation
increases sharply at the onset of bond scission; (iv) although
free-volume- and nonaffine-deformation-based measures of
plasticity both evolve dramatically during deformation, they
are not strongly correlated to each other; (v) long-range stress-
transmission in tightly entangled systems makes their plasticity
more spatially and topologically correlated and thus suppresses
strain localization. Findings (i) and (ii) generally accord with
the established-consensus view of how chain stiffness influences
shear deformation by setting the tightness of the entanglement
mesh;8,12,13 here we have formulated (ii) more precisely by
showing how the onset of chain scission triggers the mechanical

instability that produces strain localization and ultimately leads
to fracture. The most novel aspect of our work is that we have
related these more-macroscopic trends directly to findings iii−
v, which are more microscopic (i.e., have smaller characteristic
length scales) and are thus more difficult to observe in
experiments. Taken together, our results indicate that the
additional stress transmission mechanisms provided by the
greater covalent bond tensions present in tightly entangled
systems act to delocalize strain and promote more homoge-

Figure 7. Effects of chain length, preparation protocol, and finite
temperature on the stress−strain curves σyz(γ). Red, blue, and green
respectively indicate data for systems with kbend/ϵ = 0, 2, and 4. Solid
curves show the same results reported in Figure 1a. The dashed curves
in panel a show results for flexible N = 40Ne systems. Dotted curves
show results for (a) shorter, N = 8.6Ne chains; (b) rapidly quenched
systems cooled to T = 0 at |Ṫ| = 10−3/τ; and (c) systems deformed at
T = 3Tg/4 (where Tg values are given in Table 1). In all panels, insets
highlight the small-strain response.
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neous deformation than is found in loosely entangled systems,
but only until chain scission begins.
Many of the chain-stiffness-dependent differences reported

herein may be understood in terms of corresponding
differences in segmental packing. Larger values of lK/p
correspond to greater interchain interpenetration on the
segmental scale. Since our flexible-chain systems have larger
elastic moduli owing to their more efficient segmental
packing,3,70,75 yet less interchain interpenetration, they are
naturally more prone to shear banding. In contrast, our
semiflexible-chain systems’ less efficient packing and greater
interchain interpenetration make them dilate less at small
strains. Combined with their intrinsically stronger strain
hardening response, this stabilizes them against shear banding.
At larger strains, flexible-chain systems’ lesser interchain
interpenetration facilitates their ultimate failure via chain
pullout, while semiflexible-chain systems’ tighter entanglement
(associated with their larger lK/p

7,8,10) favors their more violent
chain-scission-dominated failure. All these results are consistent
with Haward’s idea12 that the dominant parameter controlling
polymer glasses’ large-strain response is the density ρc ∼ (lK/
p)3 of uncrossable chain contours.
Here we focused on slowly cooled, relatively well-aged46

glasses that occupy the lower regions of their energy landscapes
prior to deformation. We focused on the low-temperature limit
of these glasses’ mechanical response because plasticity is
simplest to interpret when it is purely strain-activated. Future
work will examine how thermal and thermal-history effects
couple to the chain-stiffness effects discussed herein, as well as
how the micromechanisms of shear deformation through
fracture couple to microscale structural features such as elastic
heterogeneity21,30,31,62−64 and/or “softness”.22,33 A brief dis-
cussion of these issues and some preliminary results are given in
the Appendix.

■ APPENDIX. SENSITIVITY OF RESULTS TO CHAIN
LENGTH, TEMPERATURE, AND PREPARATION
PROTOCOL

It has long been known that chain length is a critical parameter
determining polymer glasses’ mechanical properties. Under
typical experimental conditions, short chains (N ≲ 10Ne) favor
failure via chain pullout, while long chains (N ≳10Ne) favor
failure via chain scission.1 Above, we considered N = 600
systems which respectively have N/Ne = 8.6, 40, and 43 for
kbend/ϵ = 0, 2, and 4. We implicitly assumed that we were
considering the long-chain limit. To check the validity of this
assumption, we tested the response of systems with N/Ne = 8.6,
i.e., with N = 600, 128, and 120 for kbend/ϵ = 0, 2, and 4, and
also of kbend = 0 systems with N/Ne = 40 (N = 2800). All
simulations were conducted using the same protocols described
in section 2. Stress−strain curves for all these systems are
compared in Figure 7a. As expected, results for all chain lengths
are near-identical at small and moderate strains. Only in the
dramatic hardening regime where energetic contributions to
stress become significant (and especially so for tightly
entangled systems56) does significant N-dependence of σyz(γ)
appear. Longer-chain systems show a greater degree of strain
hardening and ultimately fracture more violently. This is
expected since chain pullout is suppressed in these systems.42

Critically, however, differences between the responses of the
N/Ne = 40 systems are qualitatively the same as those discussed
in section 3; flexible systems still exhibit a more pullout-
dominated, homogeneous fracture phenomenology than their

semiflexible counterparts. Note that the large N/Ne values at
which the long-chain limit is reached in this study probably owe
much to the Kremer−Grest model’s low monomeric friction
coefficient.36,40 Conclusively determining how the phenomena
discussed herein depend on chain length will require studying a
wide range of model (or better yet, real) polymers and is
beyond our scope.
Another factor which is well-known13,46 to strongly affect

polymer glasses’ mechanical response is their preparation
protocol. Systems that were prepared by rapid thermal
quenches or have been mechanically rejuvenated generally
display minimal strain softening and maximal ductility, while
systems prepared by slow cooling from the melt followed by
significant aging below Tg display opposite trends.14,25 The
preparation protocol described in section 2 produces the best-
aged systems readily attainable given current computer power.
Panel b contrasts their response to that of systems obtained via
rapid (|Ṫ| = 10−3/τ) quenches from T = ϵ/kB to T = 0.
Differences in the mechanical response at small strains are
typical of those observed in experiments;13,14 quenched systems
strain-soften less and exhibit more diffuse shear bands than
their annealed counterparts. At larger strains, differences in
σyz(γ) are considerably smaller, consistent with the common
view that yielding rejuvenates glasses. Interestingly, however,
some differences persist further beyond yield. For example,
⟨Dmin

2 (γ)⟩ values remain larger for the fast-quenched systems;
their smaller σ/⟨Dmin

2 ⟩ ratios reflect the fact that less-aged
glasses sit higher on their energy landscapes and are locally
“softer”.30,31,46,76,77 These differences may have broad implica-
tions for the character of plastic deformation in these systems.
For example, ref 78 concluded that the cooperativity of plastic
deformation processes in polymer glasses scales with ρe based
on the different strain-rate dependencies of the mechanical
responses of PS−PPO blends with different ρe. The
preparation-protocol dependence of σyz(γ) illustrated here is
markedly stronger for kbend = 0 systems than for their
semiflexible counterparts, suggesting that it will be of particular
interest to test the ideas of ref 78 by comparing the γ ̇
dependencies of the mechanical responses of bead−spring
systems (with different lK/p) prepared using the same protocol.
Finally, polymer glasses’ mechanical response does of course

vary strongly with temperature. While a detailed consideration
of thermal effects is beyond the scope of this paper, we
demonstrate here that results obtained for the T = 0 limit are
not irrelevant to typical ambient conditions. Panel c contrasts
the T = 0 results to those for T = 3Tg/4, a typical value of
Troom/Tg for many synthetic polymers.

25 At the high strain rate
considered here (γ ̇ = 2.5 × 10−4/τ), differences are quantitative
rather than qualitative. For example, greater thermal activation
facilitates chain pullout and reduces bond scission, which in
turn increases γfrac, but the strength of these effects does not
strongly couple to chain stiffness. Future work will examine
thermal and rate effects in greater detail.
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