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ABSTRACT: Models of the mechanical response of glassy
polymers commonly assume that entanglements inherited from
the melt act like chemical cross-links. The predictions from these
network models and the physical picture they are based on are
tested by following the evolution of topological constraints in
simulations of model polymer glasses. The same behavior is
observed for polymers with entanglement lengths Ne that vary by
a factor of 3. A prediction for the craze extension ratio Λ based
on the network model describes trends with Ne, but polymers do
not have the taut configurations it assumes. There is also no
evidence of the predicted geometrically necessary entanglement
loss. While the number of entanglements remains constant, the
identity of the chains forming constraints changes. The same
relation between the amount of entanglement exchange and
nonaffine displacement of monomers is found for crazing and thermal diffusion in end-constrained melts. In both cases, about 1/
3 of the constraints change when monomers move by the tube radius. The results show that chains in deformed glassy polymers
are constrained by their rheological tubes rather than by entanglements that act like discrete cross-links.

1. INTRODUCTION

Polymers exhibit a range of unique mechanical phenomena
because of the competition between short-range intermolecular
interactions and the long-range connectivity imposed by strong
covalent bonds along their backbone. Their rheology in the
fluid state can be understood using the concept of
entanglementstopological constraints imposed by the
inability of chains to pass through each other.1 These
constraints force polymers to move along a “tube” formed by
their neighbors, leading to rapid decreases in diffusion constant
and increases in viscosity as their length increases.
Entanglements also play a key role in models of the

mechanical response of glassy polymers.2−6 Quenching to the
glassy state has little effect on the chain structure and should
thus preserve topological entanglements. Most models start
from the assumption that these entanglements act like
permanent chemical cross-links.2−5 This allows predictions of
strain hardening and other experimental properties using
models that treat the glass as a cross-linked network of
Gaussian chains.3−7 Recent simulations8−10 suggest that this
view of entanglements is too simple. While direct experimental
observation of individual entanglements remains elusive,11

recently developed algorithms allow entanglements to be
identified and tracked in simulations. These algorithms12−14

have enabled extensive tests of the tube model of entangled

melt dynamics. More recently, they have been applied to
uniaxial strain of glassy and semicrystalline polymers and their
nanocomposites.15−18

In this paper we examine the evolution of entanglements
during one of the mechanical phenomena unique to polymer
glassescraze formation. As shown in Figure 1, crazes are an
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Figure 1. Snapshot showing part of a craze simulation with the tensile
axis in the horizontal direction and red indicating the active zone
where plastic deformation is occurring. The slice is 10a deep into the
page, kbend/u0 = 1.5, and red monomers underwent a nonaffine
displacement greater than 0.2a over a stretch increment δλ = 0.01
ending in λ = 3.4. Image produced using OVITO.23
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intricate network of highly aligned fibrils and voids. Crazes
form under the tensile stresses ahead of crack tips and can grow
to micrometer widths. Deformation of this large volume
enhances the fracture energy of glassy polymers by 3 orders of
magnitude.3−5,19,20

Craze formation is characterized by several key features: (i)
Craze growth proceeds in a narrow active zone near the
interface between the craze and undeformed material. (ii) A
constant plateau stress σp is needed to draw new material into
the craze. (iii) Drawing expands the volume by a constant
factor Λ called the extension ratio.
The extension ratio for a given polymer is relatively

insensitive to rate, temperature, and other factors, especially
for temperatures well below the glass transition temperature,
Tg. One of the main successes of the chemical cross-link model
is that it captures trends in Λ with entanglement density for a
range of polymers,4,5 although the absolute values of Λ are
typically off by about 20%. As discussed in section 3.1, this
model assumes that chains are pulled taut between entangle-
ments at Λ. The model and the cartoon for craze growth shown
in Figure 2 have also been used to argue4 that significant

entanglement loss (∼30−50%) is “geometrically” necessary to
accommodate void propagation. As described in the Appendix,
any chains involved in entanglements that lie in the path of an
advancing void finger are assumed to break to allow the finger
to advance. Rottler and Robbins did not observe the associated
chain scission and argued that the more complicated structure
revealed by simulations (e.g., Figure 1) allowed entanglements
to be preserved.8 Two other studies that reported similar
structure reported evidence of a decrease in the total number of
entanglements by 30% or more21,22 but used algorithms that
become inaccurate in the highly anisotropic craze (section 2.2).
Approaches that are not sensitive to anisotropy have been used
to study entanglements in uniaxial strain rather than crazing
and found little entanglement loss.16,17

To directly test predictions about the role of entanglements,
we track the evolution of individual topological constraints
(TCs) during craze formation using the Contour Reduction
and Topological Analysis (CReTA)14 algorithm. Results for
chains with three different stiffnesses and entanglement lengths
Ne that vary by a factor of 3 show the same behavior, suggesting
that the findings are broadly relevant. As in experiments, the

cross-link model for the extension ratio predicts trends in Λ
with Ne but not the precise prefactor. Moreover, the chains are
not pulled taut between entanglements as assumed by this
model. Indeed, the craze can be extended by almost an
additional factor of 2 before chains are pulled taut and begin to
break. This suggests that Λ is not strictly geometrical and is
determined by a balance of yield stresses in the coexisting craze
and undeformed glass.
We find that there is no statistically significant change in the

number of TCs during crazing. This supports the idea that TCs
act like cross-links but shows that entanglement loss is not
geometrically necessary. If TCs behaved exactly like cross-links,
they would remain at fixed positions along each chain. This
picture is only partially supported by studies of the distribution
of chemical spacings (covalent bonds) between adjacent TCs.
There is almost no change at large separations but some
reduction in the spacing between nearby TCs. This suggests a
limited mobility of TCs like that in a slip-link model of melt
rheology. Examination of correlations between TCs on different
chains also indicates clustering into fibrils that may be the
mechanism of avoiding entanglement loss.
Examining individual TCs between specific pairs of chains at

specific locations reveals a more complicated picture. While
there is no change in the number of TCs during crazing, there
is some change in the identity of TCs. For all systems, roughly
2/3 of the TCs in the initial state are still present in the final
state. The other 1/3 are not lost but are replaced by new TCs.
These new TCs are not localized near chain ends as expected if
chains are pulling out of their tubes. Instead, the change in
identity of the chains forming TCs can be understood by
viewing entanglements as collective constraints from the chains
that form the rheological ”tube”. This idea is confirmed by
comparing the set of TCs that change during craze formation
and thermal diffusion in a melt with chain ends fixed to limit
motion along the tube. We find that thermally and mechanically
driven diffusion cause chains to sample TCs with the same set
of surrounding chains that comprise the tube. In other words,
chains in crazes are not stretched between fixed chemical cross-
links but instead are confined to tubes that deform as the craze
forms and are essentially the same tubes commonly analyzed in
theories of entangled melt rheology.
The outline of the rest of this paper is as follows. In section 2

we describe our computational methods (molecular dynamics
simulations and topological analyses) and distinguish them
from those employed in recent, closely related work.16,21,22

Section 3 presents the results of our simulations, and Section 4
provides a summary and conclusions. The Appendix presents a
concise description of predictions of geometrically necessary
entanglement loss (GNEL).4

2. METHODS
2.1. Molecular Dynamics Simulations. We use the generic

bead−spring model25 that has been shown to capture many
mechanical properties of polymer melts and glasses, including the
process of craze formation.8 Each polymer is a linear chain of N
spherical monomers of mass m. Monomers that are not connected by a
covalent bond interact via a truncated and shifted Lennard-Jones (LJ)
pair potential

= − − +U r u a r a r a r a r( ) 4 [( / ) ( / ) ( / ) ( / ) ]LJ 0
12 6

c
12

c
6

(1)

with the same cutoff radius, rc = 1.5a, used in previous studies of
crazing.8,20,26−28 We express all quantities in terms of the molecular
diameter a, binding energy u0, and characteristic time τ = a(m/u0)

1/2.

Figure 2. (left) Common cartoon of craze formation with tension
along the vertical direction.4 Voids advance vertically around straight
fibrils of mean diameter ⟨D⟩ whose centers are separated by ⟨D0⟩.
(right) Closeup showing the predicted geometrically necessary
entanglement loss.4 Entanglements above the advancing void fingers
(large red circles) are assumed to be lost, while others (small green
circles) survive. Blue stars show broken chain ends from lost
entanglements. More refined models include horizontal “cross-tie”
fibrils where entanglements could remain without loss.24
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Covalent backbone bonds between neighboring beads along each
chain are modeled using the attractive finitely extensible nonlinear
elastic (FENE) potential

= − −U r kR r R( )
1
2

ln[1 ( / ) ]FENE 0
2

0
2

(2)

with the canonical parameters25 R0 = 1.5a and k = 30u0a
−2 and a

purely repulsive LJ potential (rc = 21/6a). This choice of parameters
prevents chain crossing and is therefore suitable for simulations of
entangled systems. It does not allow bond scission, but past studies
with potentials that allow scission find no bond breaking under any of
the conditions studied here.8,20,26−28 In addition, we verified that the
bond stresses always remained too low to produce scission.
The entanglement density is changed by varying the chain stiffness.

We use the standard29 bond-bending potential

θ θ= −U k( ) (1 cos )B bend (3)

where θ is the angle betweeen consecutive bond vectors along a chain
and equals zero for straight trimers. The three values of kbend studied
span the range from the flexible limit, kbend/u0 = 0, to kbend/u0 = 1.5,
about halfway to the onset30 of liquid crystal order.
Table 1 gives the corresponding characteristic ratios, C∞, describing

the chain statistics and the numbers of beads per rheological

entanglement length, Ne, from previous studies.12 We present results
for chains with N = 500 beads, which is much larger than Ne. Past
studies8,20,28 show that this is long enough to reach the limiting
behavior for very long chains, and we performed simulations with N =
1750 that gave statistically equivalent results.31

All MD simulations are carried out using the LAMMPS32 molecular
dynamics code. Three-dimensional periodic boundary conditions are
used, with periods Li along the Cartesian directions i = x, y, and z. The
system contained M = 500 chains, corresponding to initial periods Li0
∼ 62.7a. This is longer than the end-to-end distance of chains and has
been shown to be large enough to minimize finite-size effects.8,33

Initial glassy states were prepared using standard protocols.33 Melt
states were constructed and thoroughly equilibrated at temperature T
= 1.0u0/kB using a standard double-bridging algorithm.29 They were
then rapidly quenched at a rate Ṫ = −2 × 10−3u0/(kBτ) to T well
below Tg ∼ 0.35 u0/kB.

34 During quenches, constant volume is
maintained while kBT/u0 > 0.55, and then constant (zero) pressure is
maintained using a Nose−́Hoover barostat until the final target
temperature is reached. We will show results for kBT/u0 = 0.1, but
equivalent results were found at kBT/u0 = 0.01 and 0.2.
After quenching, crazing is induced using strain-controlled MD. As

in previous studies,8,20,26−28 simulation cells are uniaxially stretched
along the z-axis at a constant velocity L̇z = 0.06a/τ, while their
transverse dimensions (Lx and Ly) are held fixed. Constant velocity is
preferable to constant strain rate because deformation is localized in an
active zone of fixed width.26 The average deformation is quantified by

the macroscopic stretch factor λ = Lz/Lz0. A Langevin thermostat with
damping rate Γ = 1τ−1 is applied to the peculiar velocities in x and y
directions. Positions of all beads are dumped periodically during
deformation for later analysis.

We also perform end-constrained melt (ECM) dynamics
simulations35,36 that allow us to relate lateral displacements of chains
during crazing at kBT/u0 = 0.1 to tube exploration at kBT/u0 = 1.0. The
undeformed kBT/u0 = 0.1 glass is rapidly heated at constant pressure
to kBT/u0 = 0.55. All chain ends are then fixed in space, and heating to
kBT/u0 = 1.0 is continued at constant volume. The end-constrained
melts are allowed to diffuse at kBT/u0 = 1.0 for a time sufficient for
tube exploration.36 We used a time interval Δt = 5 × 104τ ≃ 10τe,
where τe is the standard tube-theory “entanglement time”.37−39

2.2. Entanglement Analyses. Although direct experimental
observation of individual entanglements remains elusive, recently
developed simulation algorithms provide spatial mappings of local
“topological” constraints between chains. This allows us to test the
various molecular pictures for entanglement evolution during craze
formation and growth. These algorithms, including PPA, Z, and
CReTA,12−14 are based on Edwards’ primitive path concept.1 They
have provided extensive microscopic tests confirming the microscopic
validity of the tube model of entangled melt dynamics.12,40 More
recent work15−18,28 has provided useful insights into the role of
entanglements in controlling the nonlinear mechanics of glassy and
semicrystalline polymers and their nanocomposites.

The various published topological analysis algorithms employ
significantly different means to obtain primitive paths (PPs) and
characterize entanglements. All give similar results for homogeneous
systems,41 but the inhomogeneous systems of interest here are more
challenging. Algorithms that shorten chains via integration of
Newton’s laws or energy minimization,42 such as standard primitive
path analysis (PPA)12 and the modified thin-chain PPA,43 introduce
nonuniform forces along the chain backbone. When applied to systems
where undeformed and crazed regions coexist, monomers can move
relative to each other by much more than Ne and entanglements tend
to cluster together. This makes it difficult to track individual
entanglements. In contrast, geometrical algorithms, such as Contour
Reduction Topological Analysis (CReTA)14,36 and Z,13,16 suppress
slippage and clustering by imposing strictly decreasing chain contour
lengths via local manipulations. For these reasons, geometrical
algorithms are preferable for the analyses conducted here.

We use the CReTA algorithm, which fixes chain ends in space and
then reduces the contour lengths of all chains simultaneously. Effects
due to primitive chain thickness14 are minimized by iteratively
inserting extra beads of smaller diameter during the minimization of
the total contour length. The resulting configurations are networks of
primitive paths with effectively zero thickness. Topological constraints
(TCs) are identified with contacts between primitive paths. At these
contacts, two primitive paths mutually block reduction in each other’s
contour length. TCs satisfy a local topological criterion based on two
linked rings (see Figure 1 in ref 36). Since they are localized in space,
they represent cross-link-like “entanglements” rather than delocalized
tube constraints. Following their evolution with stretch or time allows
us to determine if they remain in fixed locations on chains like true
chemical cross-links, slide along chains like slip links in standard1,40

melt-rheology models, or disappear as predicted by GNEL models.4

Mapping TCs to individual bead (monomer) positions gives the
distribution of TCs along the chain, in both chemical distance and
Euclidean space.14,36,44 For each CReTA-reduced configuration, we
count the total number of TCs, NTC, and find the distribution of TC
spacings P(n), where n is the number of monomers between
consecutive TCs along a chain. The average chemical spacing ⟨n⟩ is

∫ ∫⟨ ⟩ =
∞ − ∞

⎜ ⎟⎛
⎝

⎞
⎠n P n n nP n n( ) d ( ) d

0

1

0 (4)

We similarly identify the Euclidean distance d between consecutive
TCs along chains and report both the average values ⟨d⟩ and
distributions P(d). Specifically, we monitor the evolution of P(n) and

Table 1. Statistical Properties of Chains and Crazes for
Different Chain Stiffnessesa

kbend C∞ Λ Ne λmax ⟨n⟩ λmax
topo dxy/a

0 1.68 8.2 (5) 85 (5) 7.1 (2) 32 4.4 4.4
0.75 1.97 6.4 (6) 47 (3) 4.9 (2) 21 3.3 3.9
1.5 2.68 4.4 (4) 30 (2) 3.3 (1) 13 2.2 3.4

aValues of the characteristic ratio C∞ for the melt at kBT/u0 = 1 are
consistent with ref 29. The rheological entanglement length Ne is
obtained from PPA (Eq. 7 of Ref. 41) and the mean spacing between
TCs ⟨n⟩ is from CReTA analyses. The extension ratio Λ ≡ ρg/ρc is
measured from the ratio of densities in the glass and coexisting craze.
Predicted values of λmax are from eq 7, and λmax

topo is from eq 7 with ⟨n⟩
replacing Ne. The rms distance in the x−y plane between adjacent TCs
along a chain, dxy, is calculated in the undeformed glass. Numbers in
parentheses are uncertainties in the last digit when it is greater than
unity.
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P(d) during deformation and compare the distributions in undeformed
glasses to those from fully developed crazes.
We will often refer to TCs as entanglements, but it is important to

distinguish ⟨n⟩ from the rheological entanglement length Ne (Table 1).
The value of Ne is found to correlate with the Kuhn length of the
primitive path, i.e., the length over which the orientation of the
primitive path becomes decorrelated.12 This change of orientation
requires several TCs so Ne/⟨n⟩ is typically 2−3.14,40,45
A key feature of this paper is that we monitor the evolution of TCs

in “time”, i.e., with increasing stretch λ during crazing runs or diffusion
time t in melt-dynamics runs. Suppose a TC exists between beads at
position i along chain α and position j along chain β, in the initial
undeformed glass (λ = 1). Then, at stretch λ, we search for TCs in the
ranges [i − ⟨n⟩, i + ⟨n⟩] along chain α and [j − ⟨n⟩, j + ⟨n⟩] along
chain β. If a TC is found in these ranges, we determine that the
corresponding initial TC is preserved. Otherwise, we say this
entanglement has “died”. We define Q(λ) as the fraction of surviving
TCs. Note that Q does not take into account intervening λ, and some
TCs may die and be reborn. New TCs are identified as constraints
either (i) between a different pair of chains or (ii) between the same
pair of chains at positions far away from the initial positions (i, j). We
also apply CReTA to identify TCs at different t in the ECM runs and
calculate the TC survival rate Q(t) analogously to Q(λ). Note that
there is some ambiguity in the range we use to define survival of a TC.
The results presented below indicate that TCs do not slide much more
than ⟨n⟩ along chains during craze deformation and ECM runs. This
motivated our definition of survival as sliding by less than ⟨n⟩, and we
verified that other definitions do not change any of the trends we
describe.
Two recent studies have used other methods to count

entanglements during crazing or void formation. Neither followed
individual constraints, and both used methods that are affected by the
anisotropy of the craze. Richardson and Abrams reported a large
degree of disentanglement during crazing of model nanotube-filled
polymer glasses.21 Their entanglement analysis used standard PPA and
identified entanglements as regions of primitive paths with radius of
curvature below a specified value. This approach is likely to
overestimate entanglement loss because the curvature of primitive
paths changes dramatically with increasing stretch.
Mahajan et al.22 used a slight modification46 of the original primitive

path method12 to follow entanglement evolution during void
formation in model glassy polyethylene. They examined changes in
the rheological entanglement length12,41

≡ − ⟨ ⟩ ⟨ ⟩N N R L( 1) /e
rheo

ee
2

pp
2

(5)

where ⟨Ree
2⟩ and ⟨Lpp⟩ are respectively the mean-squared chain end-

to-end distance and mean primitive-path contour length. Mahajan et
al. found that Ne

rheo increased by more than 50% as their system
expanded to λ = 2 where a single void had formed in part of their
sample. They concluded that deformation “induces loss of rheological
entanglements”. However, Mahajan et al. also found that the number
of kinks along the primitive paths remained unchanged up to λ = 2.
This is consistent with our results in section 3 for much larger λ and
fully developed crazes. Mahajan et al. argued that the discrepancy
between their two measures of entanglement loss was related to long
portions of chains in certain “favorable” locations being free of
entanglements. However, another possibility is that the discrepancy
arises because eq 5 is inappropriate for deformed systems.
Consider the case where the entire system is stretched affinely along

z so that no entanglements can be lost. If chains are isotropic Gaussian
coils in the initial state, segments along the primitive path sample all
orientations with equal probability. One can show that the mean-
squared length of these segments rises more rapidly with λ than the
square of the mean length. In eq 5 ⟨Ree

2⟩ is a sum of mean-squared
lengths of segments of the primitive path, while ⟨Lpp⟩ is a sum of the
average lengths. One finds that Ne

rheo(λ) rises with λ as

λ
λ λ
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This equation implies an increase of up to a factor of 4/3 in Ne even
though an affine deformation can not change any topological property.

We have evaluated eq 5 for our isotropic and fully crazed states
using CReTA to find the primitive path. For the flexible system, Ne

rheo

increases from 73 to 105 as λ increases from 1 to 8.5. For kbend/u0 =
1.5, Ne

rheo increases from 32 to 46 in the fully developed craze. These
increases by 44% are only slightly larger than the prediction of eq 6
and thus consistent with no entanglement loss. Mahajan et al. found
larger changes at smaller λ. This appears to be because, as noted above,
PPA produces much larger monomer displacements than CReTA.
When we repeat our analysis of isotropic and fully crazed states but use
PPA, we find that Ne

rheo rises by more than a factor of 2 during crazing.
We conclude that eq 5 may be quite sensitive to the method of finding
the primitive path in anisotropic states and that it should not be used
to measure entanglement loss during an anisotropic deformation.

3. RESULTS
In this section, we present the results of our MD simulations
and CReTA analyses. First, we present stress−strain curves and
compare Λ to estimates from models that assume entangle-
ments act like chemical cross-links. Next we show that the
number NTC of TCs is preserved to within ∼1% during the
entire deformation from initial dense glass to fully developed
craze. Then we analyze the statistical distributions of TC
spacings in both Euclidean and chemical-distance space and
compare the distributions in undeformed glasses to those for
fully developed crazes. Comparison of the chemical and
Euclidean spacings shows that chains in the craze remain
unstretched on scales of order ⟨n⟩.
We next turn to analyzing individual TCs between a given

pair of chains at a given location and show that about 2/3
survive from the initial state to the fully developed craze.
Comparing the evolution of the identity of TCs during strain-
driven diffusion in crazing and thermal diffusion in end-
constrained melts shows that the remaining 1/3 are replaced by
TCs from other nearby chains. The results can be understood
from a picture where entanglements in deformed glassy
polymers do not act as chemical cross-links or slip-links
between specific chain pairs but as topological constraints from
a number of chains that form a rheological “tube” inherited
from the melt.36

3.1. Mechanical Response. As in previous studies,8,20,26,27

bead−spring MD simulations reproduce the key features of
craze formation and drawing. Figure 3 shows the tensile stress
as a function of stretch λ for the three different chain stiffnesses.
All three curves show an initial rapid rise as the polymer
deforms elastically, followed by a rapid drop when voids form
(λ ∼ 1.1). Then polymers are gradually drawn from the glass
into craze fibrils at a constant plateau stress σp until the craze
occupies nearly the entire simulation cell. Subsequent
expansion deforms the craze structure and requires a steadily
increasing stress (strain hardening). The craze can expand by
almost a factor of 2 before the stress along backbones is large
enough to break chains.8,28 We stop the simulations before this
point.
Figure 1 shows a partial cross section of a simulation of

kbend/u0 = 1.5 chains at stretch λ = 3.4. The system is clearly
separated into an undeformed region at the left and a craze
containing fibrils and voids on the right. Experiments4,5 and
simulations8 show that deformation is confined to an active
zone near the interface between glass and craze. To illustrate
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this, monomers are colored by the magnitudes of their local
nonaffine deformation as defined in ref 47. Monomers in red
experienced a locally nonaffine root-mean-square (rms)
displacement greater than 0.2a from λ = 3.39 to 3.4. They
are concentrated in a narrow region at the boundary between
undeformed glass and craze where chains are pulled out from
the glass and stretched from random walks to form fibrils. The
craze structure in blue to the right remains largely unchanged
until the entire glassy region is converted to a craze. It then
expands as the stress rises.
The growth pattern revealed in Figure 1 is very different than

the corresponding cartoon (Figure 2) used to motivate
geometrically necessary entanglement loss (Appendix). GNEL
theory was based on the assumption that fibrillation occurs via
propagation of straight viscous fingers separating straight
fibrils.4 Instead, Figure 1 and previous studies8,26 show fibrils
form a complex branching structure that can conform to the
underlying distribution of entanglements as it evolves. As we
will show, no statistically significant net entanglement loss
occurs during this process.
The extension ratio during deformation from glass to craze at

the plateau stress is Λ = ρg/ρc, the ratio of the initial glass
density to final craze density. Simulation values of Λ are given
in Table 1. The results are consistent with recent work,28 but
slightly larger than earlier values where the chain statistics had
not fully equilibrated before crazing.8,27 Note that strain
hardening sets in at λ slightly lower than Λ in Figure 3. This
is a finite-size effect related to the periodic boundary conditions
and the fact that two active zones moving from opposite
directions merge as λ → Λ.
Perhaps the greatest success of the cross-link model is its

ability to predict trends in Λ with entanglement density.4,5 If
one assumes4 that entanglements are uniformly spaced along
chains and the chemical distance between successive entangle-
ments along a chain is Ne, then the contour length and mean
Euclidean distance between successive entanglements are
respectively e = Ne 0 and = ∞d N Ce e 0, where 0 is the
backbone bond length of the given polymer. Assuming that

crazing can at most stretch chains taut between entanglements
suggests a maximum extension ratio:

λ = = ∞d N C/ /max e e e (7)

Experimental values4,5 of Λ are within about 30% of values of
λmax calculated using the rheological entanglement molecular
weight Me from a melt near Tg: Me = 4ρkBT/5GN

0 , where GN
0 is

the plateau modulus. Experiments5 also show that adding either
true chemical cross-links or entanglements produces a similar
reduction in Λ.
Table 1 shows that values of λmax are also within 30% of our

measured values of Λ. A similar correlation between λmax and Λ
was seen in previous studies with less equilibrated chains.8 One
might think that the spacing between TCs should represent the
distance between cross-links, but using ⟨n⟩ in place of Ne in eq
7 gives extension ratios λmax

topo that are much too small (Table 1).
Of course, eq 7 assumes random walk statistics with no
correlations between successive segments between cross-links,
which is not valid for the segments between TCs. As noted in
section 2.2, past work shows the orientation of the primitive
path only becomes decorrelated on scales larger than Ne >
⟨n⟩.12,14,45

Despite the success of eq 7 in predicting trends in Λ, past
work8,27 and the results presented below show that chains in
the craze are not pulled taut on lengths of order Ne or even ⟨n⟩.
Indeed, the original derivation4 of λmax had an additional factor
of √3 to account for the fact that the projection of chain
segments of length de along a given direction is only de/√3.
Only segments that happen to be oriented along the extension
direction should be pulled taut at λmax. The √3 was dropped in
later work because it did not agree with experiment, but we
conclude that it is needed to correctly predict the stretch
needed to pull chains taut. One piece of evidence is that crazes
can expand by about a factor of √3 before the tension along
the backbone rises significantly. The system with kbend/u0 = 1.5
in Figure 3 has expanded to λ = 7 = 1.6Λ, and tensions in the
chain are still too low to produce chain scission. Similar
expansions are seen for other kbend here and in refs 8 and 28
where breakable chains were used.
To further test this idea, we performed simulations of crazing

employing similar protocols but with purely repulsive (rc =
21/6a) Lennard-Jones interactions. Chain ends were forced to
deform affinely to limit disentanglement. Because there was no
adhesion, the system deformed at nearly zero stress until chains
were pulled taut. This occurred at λ ≃ 14 for flexible chains,
which is roughly √3Λ and similar to the onset of craze
breakdown through chain scission in ref 28. We also expanded
the same system by a factor of g in all three directions, so the
volume expands by g3 compared to the undeformed glass. In
this case, chains pulled taut at g ≃ 8, which is very close to Λ. In
both cases there was no statistically significant change in the
total number of TCs measured with CReTA.
A possible explanation for the success of eq 7 is suggested by

considering the nature of craze formation. As chains are pulled
into fibrils they align so that there are more strong covalent
bonds along the direction of extension. The yield stress for
further extension should rise with λ just as it does for λ > Λ in
Figure 3. When the alignment has made the yield stress of the
craze larger than that of the undeformed glass, the craze stops
stretching. Thus, Λ is determined by the requirement that a
craze stretched by Λ has a tensile yield stress σp equal to the
stress required to deform the adjacent isotropic glass. Studies of

Figure 3. Tensile stress σ as a function of stretch λ during crazing of
chains with different stiffness: kbend/u0 = 0 (black squares), 0.75 (red
circles), and 1.5 (green triangles). Vertical dashed lines indicate values
of Λ from the glass to craze density ratio. All results are for N = 500
systems at kBT = 0.1u0.
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strain hardening in uniaxial tension show that the stress begins
to rise rapidly before chains are fully stretched between
entanglements.9,48 It seems likely that removing the factor of
√3 approximately accounts for the fact that chains need not be
taut before the yield stress of crazes reaches σp. The significant
(up to 50%) variation in Λ/λmax for different polymers4,5 would
then reflect variations in the factors that determine yield and
strain hardening, including interchain friction, chain rigidity,
side groups, etc.
3.2. Changes in TC Statistics during Crazing. Simple

counting of the total number of TCs, NTC, during deformation
shows that this quantity is preserved during craze drawing.
Figure 4 shows the percentage variation in NTC with increasing

stretch for all three chain stiffnesses. Remarkably, NTC varies by
no more than ∼2% as λ increases to Λ. The small changes are
comparable to the statistical error in NTC, which is about 1%.
This result is inconsistent with the entanglement loss predicted
by GNEL theory. To further test the nature of entanglements,
we examine changes in the chemical and Euclidean distances
between neighboring TCs.
If entanglements act like chemical cross-links, the probability

distribution P(n) of chemical distances n between neighboring
TCs should remain unchanged during deformation. Figure 5
compares P(n) in undeformed glasses and fully developed
crazes at λ slightly larger than Λ. Note that when n is
normalized by ⟨n⟩, the probability distributions for all chain
stiffnesses collapse onto two separate but very similar curves
corresponding to crazed and undeformed states. The collapse
of results for systems with ⟨n⟩ changing by more than a factor
of 2.5 suggests that our results may be applicable to many linear
polymers.
The curves for undeformed glasses are consistent with past

studies of melts,14 providing support for the common
assumption4 that entanglements in polymer glasses are largely
inherited from their parent melts. There is an exponential decay
at large n/⟨n⟩, and a suppression14 of P(n) at small n, that is
more clearly evident in the inset.
Since NTC is constant (Figure 4), crazes and undeformed

glasses have the same value of ⟨n⟩. Figure 5 shows that they
also have the same exponential decay length in P(n/⟨n⟩) at
large n. The main difference in the distributions (see inset) is a
shift in weight from n/⟨n⟩ ∼ 1 to smaller values. This implies
that crazing tends to pull adjacent TCs together on scales of
order ⟨n⟩. This causes a corresponding increase in the distance
to the other adjacent TC and thus a small reduction in the
prefactor of the exponential tail of P at large n/⟨n⟩. Past studies
of the nonaffine displacements produced by crazing27 found

that relative motion of monomers was also of order ⟨n⟩. One
may speculate that craze drawing tends to pull adjacent TCs
together to cluster in the intersections between fibrils and
prevent GNEL. The observation of relative motion of TCs
along chains suggests that they act more like slip-links than
fixed cross-links during crazing. Bigger deviations from the
chemical cross-link model are described in section 3.4.
The distributions of chemical and spatial distances between

TCs are related to each other via polymer chain statistics. In
melts and glasses, chains follow isotropic random walks at large
n and the Euclidean distance d between TCs should scale as
n1/2. Crazing leads to stretched, anisotropic configurations. In
the picture underlying eq 7, d would be proportional to n up to
scales of order Ne in the craze.
Figure 6 shows results for P(d) for undeformed glasses and

fully developed crazes with λ > Λ. Normalizing by the mean
spacing ⟨d⟩ (Table 2) collapses the results for all chain
stiffnesses. For undeformed glasses, the probability is low at
small d, just as the probability of small chemical spacings is
reduced in Figure 5. There is a fairly broad peak at d ≃ 3⟨d⟩/4,
followed by an exponential decay for d > ⟨d⟩:

∝ − *P d d d( ) exp( / ) (8)

where d* is the characteristic decay length. For all chain
stiffnesses, d* ≃ 0.7⟨d⟩ (Table 2). This characteristic length
should scale with the entanglement mesh size φ, which is
smaller than the tube diameter dtube.

12

Crazing increases ⟨d⟩ by about a factor of 3 and changes the
shape of P(d). In the fully developed craze, P(d) is peaked near
d = 0, reflecting the increased probability of small chemical
separations in Figure 5. For larger d, P(d) still decays
exponentially, but now with d* ≃ 1.2⟨d⟩.
The increase in P(n) and P(d) at small separations during

crazing indicates that neighboring TCs along a chain are pulled
together. Figure 7 shows that there is a more general spatial
clustering of TCs. The solid black lines show the pair
distribution functions g(r) for all TCs as a function of r.

Figure 4. Percentage change in the total number of TCs NTC with
stretch λ for kbend/u0 = 0 (black squares), 0.75 (red circles), and 1.5
(green triangles).

Figure 5. Probability distribution P(n/⟨n⟩) of normalized chemical
spacing n/⟨n⟩ for undeformed (open symbols) and fully crazed (closed
symbols) systems with kbend/u0 = 0 (black squares), 0.75 (red circles),
and 1.5 (green triangles) at λ = 8.5, 6.5, and 4.5, respectively. The inset
shows an expanded view of the distributions at small n with lines
added to guide the eye.
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Crazing clearly increases the number of TCs at separations less
than ⟨d⟩ (vertical dashed lines).
As illustrated in the upper right of Figure 7a, a given pair of

TCs can share 0, 1, or 2 common chains.14 Figures 5 and 6 only
consider consecutive TCs along a chain, i.e., Type 1 or Type 2
TCs without any intervening TCs of any type along the
common chain. Figure 7 shows the contribution to g(r) from
each type of TC separately. Results for the undeformed glass
are consistent with previous studies of melts (see Figure 10 and
related discussion in ref 14). There is a significant number of
Type 1 TCs out to r ∼ ⟨d⟩ in the undeformed state. Crazing
reduces this number. There are very few Type 2 TCs (<1%)
and almost all are at very small separations both before and
after crazing. These TCs are most likely to form in cases where
a third chain threads between the two chains and prevents the
two TCs from moving together into a single TC or
disappearing.
The biggest change produced by crazing is in the number of

Type 0 TCs. While they share no common chains, crazing
produces a strong peak in their contribution to g(r) at about
0.25⟨d⟩ ∼ 4a. We verified that this peak can not result from any
affine deformation of the system, but it is consistent with TCs
clustering into fibrils during crazing. Indeed, the peak position
is comparable to the mean diameter of fibrils (D ∼ 3.6a) as
determined from the method described in ref 8. Clustering of
TCs can also explain the complex branching geometry shown

in Figure 1. Moreover, lateral motion of TCs into fibrils
provides a mechanism for avoiding the GNEL suggested by the
simpler cartoon of craze growth in Figure 2.

3.3. Stretching of Segments between TCs. A measure of
how stretched chains are can be constructed from the ratio S
between the Euclidean distance d′ separating monomers
involved in consecutive TCs along a chain and the contour
length associated with their chemical separation n:

≡ ′S d n/ 0 (9)

We evaluate d′ from the initial positions of monomers before
CReTA to minimize any change in geometry. Fully taut
segments are straight and have S = 1, while segments with S < 1
still possess some “slack” and can be further stretched/
straightened.
The variation of the mean tautness ⟨S(n)⟩ with segment

length is shown in Figure 8a. Covalent bonds with n = 1 are

Figure 6. Distributions of normalized Euclidean spacing d/⟨d⟩
between consecutive TCs along chains in undeformed glasses (dashed
lines, open symbols) and in fully developed crazes (solid lines and
symbols) with kbend/u0 = 0 (black squares), 0.75 (red circles), and 1.5
(green triangles). Here d is evaluated between TCs after CReTA.

Table 2. Best-Fit Parameters for Distributions Shown in
Figure 6a

kbend λ ⟨d⟩/a d*/a

0 1 4.7 3.0
0 8.5 17.7 19.7
0.75 1 4.3 2.9
0.75 6.5 13.0 17.3
1.5 1 3.7 2.5
1.5 4.5 8.1 9.5

aValues of d* are obtained by fitting to eq 8. Uncertainties are a few
percent.

Figure 7. Total pair distribution functions g(r) for TCs (black solid
lines) in the (a) undeformed glass (⟨d⟩ = 4.7a) and (b) fully
developed craze (⟨d⟩ = 17.7a) of fully fexible chains. The contribution
to g(r) of TC pairs that share 0 (red dashed lines), 1 (blue dotted
lines), or 2 (green dash-dotted lines) common chains are also also
shown. The inset to (a) illustrates these three types of TC pairs with
small black circles indicating TCs. Vertical dashed lines indicate ⟨d⟩,
and the scales are chosen so that both curves extend to r/⟨d⟩ ≈ 2.
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nearly rigid and always have S ≈ 1. As n increases, chains have
more possible configurations and the increased entropy makes
them increasingly stretchable. In the undeformed states, chains
obey Gaussian statistics for large n, implying ⟨S(n)⟩ ∝ C∞/n

1/2.
Figure 8a is qualitatively consistent with this behavior over the
available scaling range. In fully developed crazes, only segments
with n ≪ ⟨n⟩ have an average length that is close to fully taut.
For n > ⟨n⟩ there is a gradual drop in ⟨S(n)⟩ from about 0.7 to
0.5. This is consistent with segments being able to stretch by
about a factor of √3 since 1/√3 ≈ 0.58.
Figure 8b shows the distribution P(S) for segments with

chemical length larger than ⟨n⟩/2. Shorter segments are not
included since they are nearly straight even in the undeformed
glass. The distributions for undeformed glasses have a broad
peak at low S and almost no segments that are fully stretched.
The peak moves to larger S as the stiffness increases. The
distributions P(S) for fully developed crazes in Figure 8b are
fairly constant at intermediate S with peaks near S = 1 and few
segments with S near zero. Crazing clearly causes some
segments to be pulled taut, presumably those that happen to be
initially oriented along the tensile direction. However,
integrating under the curve shows that roughly half of the

segments have S < 1√3 and thus could still be stretched by
√3. This is consistent with our observation that crazes can be
stretched to λ ∼ √3Λ.

3.4. Following Individual TCs. The results presented
above examined global statistical features of TCs and their
separations. While changes in P(n) indicated that TCs could
move by distances of order ⟨n⟩, there was no evidence of
entanglement loss. In this section we follow individual
constraints defined as TCs between a given pair of mate
chains at locations that slide less than ⟨n⟩ along both chains. As
described in section 2.2, we find the fraction Q(λ) of TCs
between specific pairs of mate chains in the undeformed state
that are still present in the same region of the same chains after
a stretch of λ.
Figure 9 shows Q(λ) vs λ for chains of different stiffness.

There is an initial jump of about 5% in Q(λ) that does not

represent a true effect of deformation. Instead, it reflects an
intrinsic ambiguity in the identity of TCs produced by
CReTA.36 For example, changes in the order in which chain
sections are shortened can change which chains touch.
At larger deformations, Q(λ) decreases linearly but about 2/3

of the initial TCs are retained in the fully developed crazes for
all chain stiffnesses. Since the number of TCs is constant, about
1/3 of TCs change identity during crazing. The linear variation
in Q for λ < Λ follows from the fact that deformation and
associated exchanges in TCs are localized in the active zone. As
λ increases to Λ, the fraction of the system that has been
transformed into a craze rises linearly to unity. If about 1/3 of
TCs change identity in the active zone, there will be a linear
drop of Q to 2/3 as λ rises to Λ.
The inset of Figure 9 shows the fraction of exchanged TCs,

R(λ) ≡ 1 − Q(λ), as a function of the normalized stretch, λ/Λ.
Results for all chain stiffnesses collapse onto a common straight
line that extends to λ/Λ > 1 and R = 0.5. Once again, this
suggests that chains with very different statistics undergo
universal behavior during craze formation and that our results
may be relevant for typical glassy polymers.

Figure 8. (a) Mean value of tautness ⟨S(n)⟩ (eq 9) as a function of
chemical length n for undeformed glasses (dashed lines, open
symbols) and fully developed crazes (solid lines, filled symbols) with
kbend/u0 = 0 (black), 0.75 (red), and 1.5 (green). (b) Distribution P(S)
of tautness S for segments longer than ⟨n⟩/2 in the same systems.

Figure 9. Fraction of surviving TCs Q(λ) (solid lines) as a function of
stretch for kbend/u0 = 0 (black ■), 0.75 (red ●), and 1.5 (green ▲).
Vertical dashed lines indicate the corresponding values of Λ. The inset
shows the fraction of exchanged TCs, R(λ) ≡ 1 − Q(λ), as a function
of the scaled stretch λ/Λ.
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One possible mode of TC exchange would be motion of
chains along their tubes. In this case, both lost and new TCs
would tend to be near the end of one of the mate chains. Direct
analysis of the location of lost and new TCs shows that there is
no statistically significant increase in the probability that they lie
near chain ends.49 This mechanism of TC exchange would also
be strongly suppressed by increasing the chain length. This
would decrease the density of chain ends and the rate of
exchange by a corresponding factor. Separate simulations with
chains of length N = 1750 gave similar values of Q(Λ) even
though the number of chain ends that can participate in
exchange is 3.5 times lower. This confirms that most of the
decrease in Q(λ) does not reflect disentanglement through
mechanisms like the chain retraction or constraint release
observed in nonlinear melt rheology.50,51 Instead, we now show
that entanglements reflect collective constraints by a number of
chains that form the rheological tube. Small diffusive displace-
ments of monomers within the tube change which chains from
the tube provide the local uncrossability constraints (TCs).
3.5. TC Changes in Crazing and Melt Dynamics.

Deformation into a craze and melt diffusion both produce
nonaffine relative displacements of monomers that are limited
by entanglements. In the tube model of melt dynamics,
monomers diffuse perpendicular to the chain backbone until
they feel constraints from neighboring chains that form the
tube at the entanglement time τe. The distance normal to the
tube that a chain diffuses over τe corresponds to the tube radius.
Ultimately, entanglements force chains to reptate slowly along
their tube until they escape it at the much longer
disentanglement time τd. In a recent study of perfect networks
with fixed tubes,36 the tube constraint was examined micro-
scopically by using CRETA. It was found that during thermal
diffusion the identities of chains forming TCs exchange, while
the instantaneous TC density remains relatively constant. This
is consistent with the view that entanglements represent
constraints from a collection of chains that form a tube rather
than chemical cross-links or chain-specific slip links.
Many studies of glassy systems show that mechanical

deformation can produce nonaffine displacements that are
similar to those produced by thermal diffusion.52,53 Here we
compare the loss of TCs due to nonaffine displacements from
crazing or diffusion in end-constrained melts. Because crazing is
anisotropic, we focus on the total rms displacement δxy(λ) of
monomers in the plane transverse to the imposed extension.
There is no affine displacement in this plane. Thermal
exploration of the tube in a melt is also related to transverse
diffusion of monomers in the plane locally perpendicular to the
tube. At small times diffusion is isotropic, and to avoid
identifying the tube direction for each monomer we define

δ δ= ⟨ ⟩t tr( ) 2 ( ( )) /3t
2 , where δr(t) is the 3D displacement

vector during ECM diffusion for a time t and the factor of 2/3
gives the mean projection onto a plane.
Figure 10a shows that the fraction R of exchanged TCs varies

in the same way with δxy and δt. As in Figure 9, there is an initial
change of about 5% due to systematic variations in the
identities of TCs.36 The fraction of exchanged TCs then rises
linearly with the planar displacement in both crazing and
thermal motion. There is no change in the total number of TCs
in either system and since the ends are constrained during
thermal diffusion there should be almost no entanglement loss.
Thus, these observations are consistent with entanglements in
deformed glassy polymers acting as preserved, collective

constraints formed by multiple chains making up a tube rather
than cross-links between specific chains.
Figure 10a shows a linear change in R for crazes at λ < Λ. As

in Figure 9, this follows from the fact that deformation is
localized in the active region and the fraction of material that
has been deformed rises linearly with λ. Direct analysis of δxy as
a function of height in partially crazed systems shows almost
stretch-independent values of ∼0.2a in undeformed regions and
δxy(Λ) in crazed regions. There is a smooth transition between
these values in the active zones. The probability of changed
TCs shows the same variation with height. The local variation
of both quantities in the active zone allows us to examine how
δxy and R scale at values of λ between 1 and Λ. Plots of the local
R vs local δxy show the same linear rise in R as is observed in
thermal diffusion.
Increasing the chain stiffness reduces the size of the tube

because Ne decreases and the TC density rises (Table 1). Thus,
R rises more rapidly with displacement for larger kbend. A
natural measure of the size of the tube is dxy, the rms length of
the projection onto the xy-plane of the vector between
neighboring TCs along a chain. Values from the undeformed

Figure 10. (a) Fraction of exchanged TCs, R, as a function of the
planar displacement during crazing δxy (symbols) or thermal diffusion
of end-constrained melts δt (lines) for chains with kbend/u0 = 0 (black,
squares), 0.75 (red, circles), and 1.5 (green, triangles). Points are at λ
= 0, 1.5, 2, 2.5, ..., and the last points are near Λ (λ = 4.5, 6.5, and 8.5).
(b) Same data with displacement rescaled by dxy, the planar separation
between TCs in the glass.
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glass are quoted in Table 1. Figure 10b shows that normalizing
displacements by dxy collapses both thermal and craze data at
different kbend. This is clear evidence that the amount of TC
exchange is directly related to the fraction of the tube that
chains have explored through thermal or mechanical diffusion.
If thermal and mechanical diffusion cause chains to explore

the same tube, then exchanged TCs should involve the same set
of mate chains that collectively form the tube. We tested this
idea explicitly for flexible chains (kbend = 0). In any given
configuration, each 500 monomer chain forms TCs with about
13 different chains. During deformation to Λ or diffusion to δt
= dxy the identities of these chains change. In both cases the
cumulative number of different chains that a given chain
formed a TC with was about 18. This is consistent with about a
third (5/13) of the initial 13 TCs changing identity and
involving a TC with a different chain. For each chain we stored
all specific mate pairs that were found during deformation to Λ
and compared them to the corresponding set sampled during
diffusion over time t. The overlap between the two sets of mate
pairs rises rapidly with t and exceeds 99% before δt = dxy. This is
clear evidence that a tube formed by the same set of chains
constrains motion during craze deformation and thermal
diffusion.

4. CONCLUSIONS
In this paper, we used MD simulations to study crazing of
glassy polymers. As in previous MD studies,8,20−22,26−28 the
simulations reproduce many key features of experiments on
craze growth, including a fixed extension ratio Λ, a constant
plateau stress, and localization of deformation into a thin active
zone (Figure 1). Extending past studies by following the
evolution of individual topological constraints allowed us to test
a common microscopic picture underlying phenomenological
models for deformation of glassy polymers. Many start from the
idea that entanglements inherited from the melt act like
permanent chemical cross-links.2−6 Then, assuming that the
resulting network is pulled taut in the fully developed craze
gives a prediction for Λ (eq 7) that describes trends in
experimental data with entanglement length and chain stiffness.
While eq 7 also describes trends in our calculated Λ, the
microscopic evolution of entanglements is not consistent with a
simple cross-linked network.
The entanglement network was characterized by following

the topological constraints between primitive paths obtained via
CReTA.14 The network model for Λ assumes that chains are
pulled taut over a length equal to the rheological entanglement
length Ne. This corresponds to the Kuhn length of the primitive
path and is longer than the mean spacing ⟨n⟩ between TCs.
Past simulations8 found that the mean length over which chains
were pulled taut was much less than Ne. Here we directly
analyzed chain segments between individual TCs in the fully
developed craze. While a small fraction were pulled taut, most
could still be extended by about a factor of 2. This is consistent
with the fact8,20,28 that chain scission does not occur until λ is
roughly twice Λ. As noted previously,8 eq 7 originally included
an additional factor of √3. Separate tests were performed to
check that the original expression correctly predicted the
stretch where chains were pulled taut between entanglements.
We conclude that Λ is determined by a balance of stresses in
coexisting undeformed and crazed regions that occurs well
before chains are taut.
Another influential prediction of network models is that

there is geometrically necessary entanglement loss.4,24,54−58

Based on the simple model for craze growth in Figure 2, any
initial entangled segments that span regions that deform into
separate fibrils are assumed to be lost. For the long-chain limit
considered here (N > 5−10Ne), this entanglement loss is
assumed to require chain scission.4 Previous simulations found
no scission until λ≫ Λ,8,20,28 but some presented evidence of a
decrease in entanglement number.21,22 As discussed in section
2.2, these papers used metrics that are not accurate for the
anisotropic structure of a craze. In particular, a purely affine
deformation of polymers reduces the number of entanglements
from both measures even though no topological change occurs.
By directly counting TCs on primitive paths, we showed that

the number of TCs was essentially unchanged during craze
formation. The mean chemical spacing ⟨n⟩ between TCs along
a given chain was also constant. The distribution of chemical
spacings changed only slightly, showing a tendency for nearby
TCs to move closer together. Other measures of the Euclidean
distances between TCs (Figure 7) also showed a tendency for
them to cluster during craze formation. Geometrical models of
entanglement loss do not allow for any correlation between the
fibril surface and entanglement locations or for the fibril
branching observed in crazes (Figure 1). We argue that
clustering of entanglements allows the polymer to create a fibril
structure without entanglement loss.
While there was no drop in the number of TCs during

crazing, we found changes in the identities of TCs as defined by
contacts36 between primitive paths of specific pairs of chains at
specific locations. These changes were not localized near chain
ends as would be expected for entanglement loss by chain
pullout or retraction. Instead, they occurred uniformly along
the chain. Model polymers with very different entanglement
lengths showed very similar behavior, with about 1/3 of TCs
changing by λ = Λ. We argued that during deformation of
glassy polymers constraints from entanglements do not act like
chemical cross-links between specific pairs of chains. Instead,
chains feel collective constraints from the chains making up the
tube used in theories of melt rheology.1 To test this
equivalence, we compared the changes in TC identity during
mechanical crazing and thermal diffusion in melts (with ends
fixed to minimize disentanglement). The number of exchanged
TCs grows in the same way with the rms nonaffine
displacement of monomers whether motion is driven by
thermal diffusion or mechanical deformation. Results for melts
and crazes with different Ne all collapsed onto a single curve
when the rms displacement was normalized by a measure of the
tube radius. At λ = Λ, mechanical deformation produces
displacements that are comparable to the transverse distance
between TCs, dxy.
As a further test of the tube concept, we compared the set of

chains constraining thermal diffusion in end-constrained
melts35,36,59 and craze formation. During diffusion by about
10 times the entanglement time or crazing to Λ, about 1/3 of
TCs changed identity. There was a 99% overlap of the new
pairs of chains forming TCs during thermal diffusion and
mechanical deformation, confirming that the same tube
constrains both types of motion. Chain ends could move
during crazing, but there was no evidence of TC exchange at
chain ends. This and the equivalence between TC exchange
during thermal and mechanical diffusion suggest that the tube
remains intact during crazing. Note that chain pullout may be
important close to the glass transition where Λ often rises.4

This effect has been included in tube-models of disentangle-
ment during crazing.50,60
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Our simulations have used a very simple bead−spring model
but show strikingly universal behavior over a range of chain
stiffnesses that change the entanglement density by a factor of
3. This suggests that the results may apply to a range of
experimental systems. We hope that our work will inspire
simulations with more realistic potentials and also the
development of improved microscopic models. One interesting
avenue would be tube models that incorporate glassy or
frictional models of deformation and tube exploration. It will
also be interesting to explore how the results are affected by
adding true chemical cross-links to an entangled system.

■ APPENDIX. GEOMETRICALLY NECESSARY
ENTANGLEMENT LOSS

The final failure of crazes must occur at a fracture plane where
chains pull out of the opposing surface or break. The frictional
forces required for chain pull out grow rapidly with chain
length, and experiments4,61 and theory20,28 show that chain
scission dominates when chains are longer than 5−10Ne.
There has been greater debate about the amount of chain

scission during craze drawing to an extension ratio of Λ.
Simulations have found negligible scission at these
stretches,8,20,27,38 but there is some evidence for chain scission
in experiments4,54,55 that led Kramer to formulate a theory of
“geometrically necessary entanglement loss” (GNEL). The
model is motivated by the cartoon of craze formation in Figure
2. It assumes fibrils are straight cylinders with average
separation D0 and diameter D = D0/Λ1/2. The simplest version
of GNEL theory predicts that all entanglements between chains
that initially span regions that are deformed into different fibrils
are lost. The fraction 0 of entanglements that are lost is then4

= −
⎛
⎝⎜

⎞
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D

d
D

1
30

0 0
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(10)

where d is the Euclidean distance between entanglements in the
undeformed state.
Predicted values of 0 for typical glassy polymers are about

1/2, e.g., measurements of polystyrene54 show (d = 9.6 nm, D0
= 12 nm) and thus predict ≃ 0.6GNEL . This estimate is in fact
an upper bound since it does not allow for entanglements to
move laterally to avoid the voids. Later generalizations
accounted for the presence of horizontal cross tie fibrils that
connect the main fibrils. The fraction of entanglements that
could survive by localizing in cross-tie fibrils was assumed to be
proportional to the mass fraction pc of cross-tie fibrils. The
corrected fraction of lost entanglements is

* = − p(1 )c 0 (11)

Typical values of pc for synthetic-polymer glasses are in the
10%−20% range.
Historically, GNEL has been widely accepted and was used

in followup theoretical and experimental work, including (e.g.)
predicting the effect of entanglement loss via chain scission on
the plateau stress σp

58 and the critical craze width,56 as well as
explaining the strain rate and chain length dependence of the
craze initiation stress.62 However, since experiments cannot
directly identify individual entanglements and thus cannot
directly measure , GNEL theory has never been conclusively
confirmed. In section 3.4, we showed that formation of stable
crazes does not produce any significant entanglement loss. This
result is consistent with previous alternate proposals that do not

require such high levels of disentanglement. For example,
extensive molecular dynamics simulations by Rottler and
Robbins8 suggest that entanglements can survive the fibrillation
process via lateral motions of size comparable to d and D0.
Indeed, pictures like Figure 1 and electron microscope images
show that fibrils are far from being straight cylinders and
suggest they can angle to accommodate the location of
entanglements.
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