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Why is Understanding Glassy Polymer Mechanics So Difficult?
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ABSTRACT: In this Perspective, I describe recent work on systems
in which the traditional distinctions between (i) unentangled ver-
sus well-entangled systems and (ii) melts versus glasses seem
least useful, and argue for the broader use in glassy polymer
mechanics of two more dichotomies: systems which possess (iii)
unary versus binary and (iv) cooperative versus noncooperative
relaxation dynamics. I discuss the applicability of (iii–iv) to under-
standing the functional form of strain hardening. Results from
molecular dynamics simulations show that the ‘‘dramatic’’ hard-
ening observed in densely entangled systems is associated with

a crossover from unary, noncooperative to binary, cooperative
relaxation as strain increases; chains stretch between entangle-
ment points, altering the character of local plasticity. Promising
approaches for future research along these lines are discussed.
© 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys
49: 979–984, 2011
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One of the reasons dense polymeric systems so interest phys-

ical scientists, apart from their ubiquity and utility, is the

wide range of energy, length, and time (EL&T) scales con-

trolling their properties. Figure 1, a schematic depiction of

typical stress-strain curves for ductile polymer glasses, illus-

trates the mechanical consequences of this range. Undeformed

systems occupy low-lying regions of a rugged free energy land-

scape. In the linear elastic regime, systems remain near initial

free energy minima, and stress is controlled by local forces at

the Kuhn scale or below. Yield occurs when energetic barri-

ers to segmental rearrangements are overcome; the resulting

increase in local mobility produces strain softening. In the

plastic flow regime, the stress � = ∂W/∂ε is relatively con-

stant. Strain hardening begins when ∂W/∂ε must increase

to drive further segmental rearrangements while maintaining

chain connectivity. This increase becomes more dramatic as

the scale over which chains are oriented approaches that of

the entanglement mesh. Finally, fracture occurs when cohesive

forces, either primary covalent bonds or secondary non-

bonded interactions, no longer suffice to maintain material

integrity.

The industrial importance of understanding strength and fail-

ure of polymeric materials has made quantitatively predicting

the entire range of mechanical response shown in Figure 1 one

of the main goals of physical polymer science. Although great

progress has been made in recent years towards understand-

ing phenomena at strains up to and including the early stages

of strain hardening within a single framework, a coherent

theoretical picture including dramatic hardening and fracture

remains elusive. In this Perspective, I discuss some of the rea-

sons why this is so, and outline possible strategies for moving

forward.

Polymer dynamics and mechanics are often cast in terms of

polar dichotomies; a given system is classified as belonging to

one “pole” or the other. The two most commonly employed

dichotomies for bulk amorphous systems (at least those rel-

evant to Fig. 1) are those between: (i) unentangled versus

well-entangled systems, and (ii) melts far above Tg versus
glasses far below Tg. Dynamical behavior in polar limits (e.g.,
unentangled melts2) is amenable to relatively simple theoret-

ical treatment. Because the EL&T scales controlling relaxation

are well separated, one may focus on a dominant scale and

then treat relaxation on that scale. In the context of Figure 1,

only glassy systems possess a finite plastic flow stress, and

only entangled systems strain harden. Flow and hardening

have therefore traditionally been explained in terms of local

plasticity3 and the work required to deform the entanglement

network,4 respectively.

Dichotomies (i–ii) have obviously proven of great utility for
understanding polymer mechanics, but for actively deform-

ing systems, they are less useful. A classic example is the well

known tendency of systems above their quiescent Tg to exhibit
glass-like mechanical features when deformed sufficiently

rapidly. Significant strain hardening occurs when the prod-

uct of strain rate ε̇ and chain-scale relaxation time � exceeds
unity. More recent experimental, theoretical and simulation

© 2011 Wiley Periodicals, Inc.
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work5–7 has further blurred the distinction between melts

and glasses by showing that systems below their quiescent

Tg become meltlike on short length scales under active defor-
mation. Finite strain rates can reduce the segmental relaxation

time �� by orders of magnitude; ε̇�� drops well below unity at

yield. This drop is partially reversed in the strain hardening

regime, and in all cases, �� increases dramatically when defor-

mation is ceased. Clearly the terms “melt-like” and “glassy”

poorly characterize such nonlinear behavior. Categorizing sys-

tems as either “entangled” or “unentangled” can be similarly

complicated, because entanglements (unlike crosslinks) may

be short-lived or long-lived compared to experimental time

scales, and their relaxation is also altered by active deforma-

tion. These developments have helped clarify why developing a

coherent theoretical framework for predicting the entire range

of behavior depicted in Figure 1 is so difficult.

How, then, to proceed? The great advances made by concep-

tualizing mechanical properties in terms of dichotomies (i-ii)
suggest that looking for additional ones is a useful strategy.

It seems to me that two potentially very useful dichotomies

for improving our understanding of glassy polymer mechanics

are: (iii) unary versus binary relaxation and (iv) noncooper-
ative versus cooperative relaxation. Like (i) and (ii), (iii) and
(iv) are dichotomistic views of the character of the dominant
relaxationmechanisms. The “poles” correspond to whether the

constituents of a system can be accurately treated as relaxing
independently of one another. If relaxation is unary and/or

noncooperative, they can. If it is binary and/or cooperative,

they cannot; instead, one must explicitly treat correlations

between constituents. In systems with noncooperative relax-

ation, a tracer particle would have the samemotion in a system

where all other particles are frozen as in its unfrozen coun-

terpart.8 In systems with cooperative relaxation, the opposite

is true.

An example illustrating the unary versus binary dichotomy

is as follows; suppose the stress � is a function of the intra-

chain statistics 〈R2(n)〉 = |�ri−�ri+n|2, and perhaps the history of
〈R2(n)〉, where n is chemical distance. In other words, suppose
the stress is controlled by chain configuration but interchain

correlations are either unimportant or trivially integrable.

Then the stress relaxation processes are unary. The classi-

cal theory of rubber elasticity, which assumes conformations

of single strands at the scale n = Nc (the distance between
crosslinks) control stress, is a unary-relaxation theory. On the

other hand, suppose local interchain orientation is important;

relaxation processes will then be binary or higher order.

A paradigmatic higher-order process in polymers is disen-

tanglement, which occurs when one chain end deintersects

another chain. This is a binary process because it involves

two chains. While it is often useful to approximate disentan-

glement as an “infinite” order process and “wrap” it into a

unary mean-field theory (i.e., the Doi-Edwards tube theory of

melt dynamics2), it is well known that in many cases such

a description becomes inadequate.9 In principle, binary pro-

cesses require a formal description that utilizes some two

point correlation function F(�r1, �r2) where �r1 and �r2 lie on

different chains.

Dichotomies (iii–iv) are not new concepts, and have previ-

ously been applied in polymer melt rheology9 and many other

fields. They are subject to ambiguities similar to those men-

tioned above for (i-ii); the same system may have unary and

binary and/or cooperative and noncooperative relaxation pro-

cesses occurring simultaneously on different length scales.

Many processes are known to become increasingly coopera-

tive as Tg is approached from above,10 and remain so below Tg,
but predicting the degree of cooperativity is difficult. Another

useful measure of cooperativity is the degree of coupling

between different relaxation processes. This clearly strength-

ens as separation of the relevant EL&T scales decreases, but

quantitative prediction is challenging. Furthermore, in systems

exhibiting nonlinear response, it is typically a priori unclear
which couplings are most important in which regimes. Such

FIGURE 1 Schematic of stress-strain curves for ductile polymer
glasses. Dramatic hardening coincides with the increase in slope
at large strains. In brittle systems, fracture intervenes at lower
strains because strain hardening is insufficient to stabilize the
material against postyield strain localization.1
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issues remain controversial even for simple (e.g., metallic and

colloidal) glassformers. However, since few theories of glassy

polymer mechanics explicitly consider them, opportunities for

progress abound. I now give an example illustrating how even

qualitative treatment of dichotomies (iii–iv) can elucidate the
nature of the crossover to dramatic hardening.

Understanding the role played by entanglements in control-

ling the mechanical properties of polymer glasses has proven

extremely difficult. The canonical11 functional form of stress-

strain curves at large strains, “Gaussian” strain hardening, is

given by

� = �0 + GRg(�̄), (1)

where �0 is a flow stress, GR is the strain hardening modu-
lus, �̄ is the macroscopic stretch tensor, and g(�) is alternately

the (negative) derivative of the entropy density of an affinely

stretched entanglement network, or a Neohookean term. The

traditional entropic treatment of strain hardening in glasses4

qualitatively captures the shape of stress-strain curves, but

has several flaws, extensively discussed in the literature

(e.g., refs. 12–14).

Much progress has been made in the five years since Kramer

challenged13 the polymer physics community to resolve this

issue. Most physically, the mechanisms underlying strain hard-

ening in glasses have been shown to be largely viscous

and closely connected to plastic flow.14,15 But the underly-

ing problem of distinguishing between models which assign

different roles to entanglements yet make similar predictions

remains unsolved. Theories which assume entanglements are

all-important, and theories which assume they play no role,

both predict the Gaussian form. It is seemingly predicted by

practically any theory which predicts chains deform affinely on

large scales, whether based on linearized entropic elasticity,

Neohookean viscoplasticity16 or alteration of interchain order-

ing and suppression of density fluctuations.6 Similarly, sub-

Gaussian hardening (� sublinear in g) is produced by subaffine
large-scale deformation, whether this arises from relaxation of

the entanglement network (as in melts or transient networks)

or finite ε̇� in uncrosslinked glasses.12,16 Dramatic hardening
(� supralinear in g) can be produced either by entropic deple-
tion of configurations for finite-n chain segments4 or by the
increased plastic deformation and bond stretching required to

deform chains affinely while maintaining their connectivity.

Formulation of a robust microscopic theory predicting the

entire range of mechanical response shown in Figure 1 seems

doubtful while these ambiguities remain. One approach to

resolving them is to connect changes in macroscopic mechani-

cal response with increasing strain to changes in relationships

between structural features and relaxation mechanisms at dif-

ferent length scales. Figure 2 presents results for the crossover

to dramatic strain hardening, which I will argue can best be

understood as representing crossovers from unary to binary

and from noncooperative to cooperative relaxation phenom-

ena. Results are obtained via molecular dynamics simulations

of a simple coarse-grained bead-spring model19 that captures

the key physics of linear homopolymers. The simulation

protocol is standard14 and is described in the Appendix.

Both flexible and semiflexible chains are studied to illustrate

the behavior of “loosely” and “tightly”20 entangled systems,

respectively.

Panel (a) compares the normalized stresses (�/(�0+GRg(�))),

where GR is fit to the initial hardening regime (0.5< |g(�)| < 1).

The plateau for flexible chains indicates nearly Gaussian hard-

ening at all strains. In contrast, semiflexible chains show

dramatically supra-Gaussian hardening for |g(�)| � 2. Panel

(b) shows the energy dissipated per damaged bond Ud for the
same systems. Ud = �Q/P, where �Q is the dissipative com-
ponent of the stress and P is the rate of bond damage per

unit strain (see the Appendix). Flexible chains again show a

plateau, indicating Ud is constant when hardening is Gaussian,
while semiflexible chains show an increase in Ud for g(�) � 3.

Differences between loosely and tightly entangled systems are

directly associated14 with differing degrees of increase in the

energetic component of stress, �U = � − �Q .

Panel (c) shows the correlation in bond tensions T =
∂UFENE/∂� along chain backbones in tightly entangled systems.

The correlations are roughly exponential. At intermediate n,
〈TiTi+n〉 ∼ exp(−2n/Ne) in the limit of large strains; the factor
of 2 suggests a binary suppression of relaxation, wherein

tension is concentrated at increasingly localized entangle-

ment points (with 2 chains/entanglement) and decorrelates

between entanglement points. In contrast, bond tensions in

flexible systems (not shown) are much smaller and less corre-

lated. This is of interest since chain tension relief by covalent

bond scission is a keymechanism leading to brittle fracture.1,17

Panel (d) shows the probability distribution for differen-

tial nonaffine jump sizes D2dna in tightly entangled systems,

defined by

D2dna =
∣∣∣∣∣
�rk+1 − �̄k+1

�̄k
�ri
∣∣∣∣∣

(2)

where �rk is the position of a particle and �̄k is the macro-
scopic stretch tensor at |ε| = k�ε. The tails of P(D2dna) become
longer with increasing stress and strain.21 This effect is most

pronounced for tightly entangled chains in the dramatic hard-

ening regime; results for loosely entangled chains are similar

to those found in ref. 21 and are not shown. It arises because

correlated bond tension at the scale n∼Ne increases the size
of local plastic rearrangements, which in turn increases the

energy they dissipate (panel b).

All results in Figure 2 are consistent with crossovers from

unary to binary relaxation as chains stretch between entan-

glements, and from noncooperativity to cooperativity between

deformation at the level of the entanglement mesh and local

plastic rearrangements at the monomer or Kuhn scale. For the

strains considered here, these crossovers are present in tightly

entangled but not loosely entangled systems; all coincide with

increasing stretching of chains over chemical distances n∼Ne.
Note that the crossovers in panels (a–b) occur at different

strains, while those in panels (c–d) are gradual. It seems

likely that the unary-binary and noncooperative-cooperative
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FIGURE 2 Crossover from unary-noncooperetative to binary-cooperative relaxation in polymer glasses arising from stretching of
entanglement network. Systems are uniaxially compressed to a true strain ε = −1.5.: � ≡exp(ε), |g(�)| ≡ |�−1 − �2|, and |g(−1.5)| =4.43.
Simulations are performed at low temperature T ∼Tg/35 tominimize thermal noise, and a high strain rate |ε̇| =10−3/�LJ is purposefully
chosen.17 All units and protocols are desribed in the Appendix. Panels (a-b) contrast results from loosely and tightly entangled sys-
tems for (a) scaled stress �/(�0 +GRg(�)) and (b) energy dissipated per ‘‘damaged’’ LJ bond. Statistical noise in panel (b) arises from
finite system-size effects. Panels (c-d) show results for tightly entangled systems: variations with strain of (c) bond tension correlation
fluctuations along chain backbones, and (d) the probability distribution for nonaffine jump sizes.

crossovers are themselves coupled, though the strength of the

coupling remains unclear. Understanding such behavior at a

predictive level may be difficult, but presents an interesting

challenge for the community.

Single-chain-in-mean-field descriptions of strain harden-

ing4,6,16 probably cannot quantitatively treat the “entanglement-

stretching” unary-binary crossover, even if interchain corre-

lations are integrated into the mean field. Similarly, theo-

ries assuming a single relaxation mechanism (e.g., segmental

relxn.) cannot treat crossovers from noncooperative to coop-

erative relaxation which are driven by coupling to another

relaxation mechanism of different character. Presently, the

microscopic theory which most satisfactorily captures the

elastic, yield, softening, flow, and hardening regimes is due

to Chen and Schweizer;6 it is based on a strain- and thermal-

history-dependent dynamical free energy for segmental rear-

rangements in the glassy state. Although it captures much of

the physics of strain hardening (e.g., its coupling to plastic

flow) by predicting how segmental relaxation is suppressed

due to changes in interchain ordering in a macroscopic strain

field, and even predicts variations in the character of acti-

vated segmental hops, it is questionable whether it can capture

the crossovers shown in Figure 2(b,c), and it does not treat

fracture.

An interesting feature of the unary versus binary dichotomy

is that unary relaxation processes “scale” linearly with the

density � of relaxing constituents, while binary processes

scale quadratically with �. For example, the reason polymeric
entanglement is traditionally regarded as a (nearly) binary

process22 is that entanglement density scales roughly as �2,
where � is the density of uncrossable chain contours. Stud-

ies of bidisperse systems23 (with constituent densities (�1, �2)
and relaxation processes which scale as �1�2) should therefore
be particularly useful in testing whether relaxation is unary or

binary. Many such studies have been performed for melts well

above Tg, in which the coupling between relaxation of short
and long chains is now well understood,24 but similar studies

in systems below Tg are in their infancy. New experimental

techniques such as scanning near field optical microscopy25

should be particularly useful for these purposes.
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A specific example of how such studies can elucidate causal

relationships for polymer mechanics is as follows. Exper-

iments performed on (essentially) monodisperse systems

remain contradictory on such basic questions as to whether

or not GR is proportional to entanglement density �e;11,12,15 if
it is, it is clear that the constant of proportionality differs for

chemically different polymers. In monodisperse (but not bidis-

perse) systems, both GR and entanglement density �e scale
approximately as l3K .

13,26 This “macro–micro” ambiguity led to

much controversy over whether GR scales fundamentally with
entanglement density or Kuhn length. For systems exhibiting

Gaussian hardening, an apparent resolution of these issues has

been obtained via recent simulation and experimental studies

of bidisperse systems16,23 that suggest structure at the Kuhn

level is the more fundamental controlling factor. However,

the ambiguity remains unresolved in the dramatic harden-

ing regime, and the crossovers described above suggest that

developing a theoretical description that captures the entire

spectrum of behavior depicted in Figure 1 will require a great

deal more work.

In this effort, many of the most fruitful ideas may come from

glass transition physics,10 which I believe has been under-

utilized to date in theories of glassy polymer mechanics (at

least those which treat large strains), except that of ref. 6. It

may also be profitable to employ concepts developed in recent

studies of other “soft” systems, such as colloidal and granular

materials. One promising possibility is to determine whether

and when the properties of polymers are more like attractive

glasses or repulsive glasses.8,27 Other potentially useful con-

cepts include jamming, soft modes, inherent structures and

energy landscapes.28 Much also may be gained by working

to bridge microscopic theories with increasingly sophisticated

new constitutive models; some especially promising models

incorporate melt-like relaxationmechanisms.29 I hope that this

work will help spur further effort along these lines.
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APPENDIX: SIMULATION PROTOCOL

All beads have mass m and interact via the truncated and

shifted Lennard-Jones potential ULJ(r) = 4u0[(a/r)12−(a/r)6−
(a/rc)12 + (a/rc)6], where rc = 1.5a is the cutoff radius and
ULJ(r) = 0 for r > rc. The unit of time is �LJ =

√
ma2/u0. Each

polymer chain contains N beads. Covalent bonds are mod-

eled using the finitely extensible nonlinear elastic (FENE)

potential U(�) = −(1/2)(kR20) ln(1 − (�/R0)2), with R0 = 1.5a
and k = 30 u0/a2,19 and have variable length �, with the

equilibrium value �0 = 0.96a. A bending potential Ubend(�) =
kbend(1 − cos �), where � is the angle between consecutive

covalent bond vectors along a chain, imparts variable chain

stiffness. Two values of kbend are employed: flexible chains with
kbend = 0 have an entanglement length Ne � 85, and semiflex-

ible chains with kbend = 2u0 have Ne � 22.20 The systems are

well entangled; N = 500 for flexible and 350 for semiflexible

chains. Periodic boundaries are applied in all three direc-

tions, with cell dimensions Lx , Ly , and Lz along the x, y, and
z directions. Well-equilibrated melts are rapidly quenched to
kBT = 0.01u0 ∼ Tg/35. Uniaxial compression is applied along
the z-direction at constant strain rate ε̇ = L̇z/Lz , and Lx and
Ly are varied to maintain zero stress along the transverse

directions.

Simulation results were obtained using LAMMPS.30 Bond dam-

age [Fig. 2(b)] corresponds to local plastic rearrangements,

identified with changes in intermonomer neighbor distances

greater than 20% over a strain interval |�ε| = 0.025.14 Non-

affine jumps [Fig. 2(d) and eq 2] are defined using the same

|�ε|. The energy dissipated per damaged bond is given in units
of u0, and bond tensions [Fig. 2(c)] have units u0/a.
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