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ABSTRACT

Using molecular dynamics simulations of a binary Lennard-Jones model of glass-forming liquids, we examine how the decay of the normalized
neighbor-persistence function Cg(t), which decays from unity at short times to zero at long times as particles lose the neighbors that were
present in their original first coordination shell, compares with those of other, more conventionally utilized relaxation metrics. In the strongly
non-Arrhenius temperature regime below the onset temperature Ta, we find that Cg(t) can be described using the same generic double-
stretched-exponential functional form that is often utilized to fit the self-intermediate scattering function S(g, t) of glass-forming liquids in
this regime. The ratio of the bond lifetime Tyonq associated with Cg(t)’s slower decay mode to the a-relaxation time 74 varies appreciably and
non-monotonically with T, peaking at Thona/Ta =~ 45 at T ~ Ty, where Ty is a crossover temperature separating the high- and low-temperature
regimes of glass-formation. In contrast, Tpond remains on the order of the overlap time 7o, (the time interval over which a typical particle
moves by half its diameter), and the peak time 7, for the susceptibility y, (¢) associated with the spatial heterogeneity of C(t) remains on
the order of Timm (the characteristic lifetime of immobile-particle clusters), even as each of these quantities varies by roughly 5 orders of
magnitude over our studied range of T. Thus, we show that Cp(t) and y;(t) provide semi-quantitative spatially-averaged measures of the

slow heterogeneous dynamics associated with the persistence of immobile-particle clusters.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0262404

I. INTRODUCTION

Numerous experimental and computational studies have
shown that glass-forming liquids are dynamically heterogeneous,
in the sense that they possess transient regions where the relax-
ation dynamics can be substantially faster or slower than their
spatial average. " High-mobility particles tend to form clusters
with lifetimes scaling as Tpob ~ T/D, where T is the temperature
and D is the diffusion constant. Low-mobility particles tend to
form clusters with lifetimes Timm ~ T«, Where 7, is the a-relaxation
time. Most studies of dynamical heterogeneity have focused on
the mobile-particle clusters, and the associated cooperative motion
of the mobile particles, in relation to understanding glass-forming
liquids’” temperature-dependent activation energy Ex (T).

Immobile-particle clusters have also been shown to play a sig-
nificant role in these liquids’ dramatic dynamical slowdown. Lacevi¢

et al. connected these clusters directly to a relaxation more than
twenty years ago'’ by showing that they dominate the four-point
position-time susceptibility x,(t) and that the time 740, at which
X4(t) is maximized tracks 7, with decreasing T. Many studies per-
formed since then have defined “dynamical heterogeneity” (DH)
in terms of x,(t). DH has also been often defined in terms of the
more easily calculated and experimentally determined peak in the
non-Gaussian parameter a,(t). Notably, the time t* at which a; is
maximized is a “slow f8” relaxation time in the sense that it is much
longer than the fast 8 relaxation time 75 governing the initial decay
of S(g, t), but much shorter than 7, in glass-forming liquids at low
temperatures. Recent work has shown that the T-dependence of t*
closely tracks that of the Johari-Goldstein relaxation time 7jg. 1,16
Starr et al. showed'' that there are two distinct types of dynamic
heterogeneity on these time scales [i.e., O(t*) and O(74)], which
are, respectively, associated with the mobile- and immobile-particle
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clusters; below, we refer to these as “fast” and “slow” DH. How-
ever, despite the advances made by a few more-recent studies,’” "
immobile-particle clusters and slow DH remain relatively poorly
studied in comparison to their mobile-particle and fast counterparts,
and there is clearly a need to better understand these phenomena.

In this paper, we take a different approach to characterizing
the spatially heterogeneous dynamics associated with the immobile-
particle clusters. In particular, we focus on the neighbor-persistence
metric Cg(t), which varies smoothly from 1 to 0 as particles lose the
neighbors that were present in their original first coordination shell,
and captures the extent to which individual particles progressively
“forget” their original local environments. Cg(t) was suggested to
be a natural measure of structural relaxation in supercooled lig-
uids as far back as the work of Frenkel in the 1930s,>' and Rahman
examined related quantities in some of the first molecular dynamics
simulations,” yet this metric has received surprisingly little atten-
tion over the intervening decades. This neglect can no doubt be
traced to the fact that it cannot yet be experimentally measured in
atomic and molecular glass-formers.

Experimental measurements of Cg(t) have, however, been per-
formed for colloidal glass-formers. Conrad et al. showed that their
solid-like, elastic response to an applied shear strain on timescales
t < Teond arises from the system-spanning nature of the immobile-
particle clusters on these timescales.”” They showed that these clus-
ters have Cp(t < T4ua) = 1, and further, that in the glassy state, such
clusters persist throughout the experimental observation window.
Zhang et al. compared Cg(¢) in attractive and repulsive glasses com-
posed of the same particles at the same packing fractions’ and
showed that the much-slower dynamics of the former systems is
directly associated with their much-slower-decaying Cg(t). Laurati
et al. extended the results of Ref. 23 to mechanically deformed sys-
tems, showing’® that the shape of the stress—strain curves o(y) under
startup shear is intimately connected to Cg(y), i.e., to the fraction
of particles’ neighbors in the initial undeformed state that remain
their neighbors at shear strain y. Most recently, Higler et al. mea-
sured Cg(t) in charge-stabilized colloidal suspensions with a wide
range of ¢, Ta, Thond> and coordination numbers Z.”° They used these
results to reformulate Dyre’s shoving model””** for the relation-
ship between 7, and the cage-escape lifetime 7cage (Which is of order
Thond) in terms of more-readily observable particle-scale quantities.

Several additional insights have come from molecular dynam-
ics simulations. Yamamoto and Onuki showed”’ that the time scale
Thond associated with the decay of Cg(t) at large ¢ seemed to sat-
isfy the relation Tpong = 1074, that reneighboring events become
increasingly spatially heterogeneous with decreasing T, that Tpong
o< & where ¢ is the correlation length of such heterogeneities (i.e.,
the size of clusters formed by particles with few lost neighbors),
and that the character of these heterogeneities is strongly affected by
applied shear. Shiba et al. substantially extended these results, show-
ing™ that 740 was considerably shorter than the peak time T4 pond
for four-point bond-breakage correlations, and claimed that this is
associated with long-wavelength vibrational modes, which reduce
the former but not the latter. Iwashita et al. argued’’ that Cg(t)
is directly connected to the super-Arrhenius temperature depen-
dence of fragile glassformers’ relaxation dynamics. In particular,
they identified the average time for particles to lose one neighbor
(71c) as the time scale most directly associated with the elementary
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excitations in weakly supercooled liquids. Most recently, Scalliet
et al. compared the spatially resolved Cg[Tuonda(T)] of supercooled
liquids over a wide range of T.*” They showed that the spatial hetero-
geneity of neighbor persistence increases dramatically as T decreases
into a regime that is more deeply supercooled than that probed
by most previous simulations. In this regime, structural relaxation
corresponds to transient but long-lived solid-like regions with low
particle mobility and high Cg being gradually “dissolved” by liquid-
like regions displaying opposite trends. This interpretation seems to
agree with a wide range of recent theoretical work.”""’

Taken together, these results indicate that Cg(t) is an appeal-
ing relaxation metric to study because it is both experimentally
accessible and simple to interpret, yet it can offer deep insights not
obtainable via more-commonly studied metrics such as particles’
mean-squared displacement A®(¢) and self-intermediate scattering
function S(g,t). However, the quantitative relationships between
the relaxation times associated with Cg(t) and several other, more-
conventionally utilized relaxation metrics have yet to be estab-
lished. In this paper, using molecular dynamics simulations of the
Kob-Andersen (KA) model,””” a model glass-former that has been
intensively studied for three decades, we do so.

We find that for temperatures below T, where T is defined as
the temperature below which 74(7T) significantly exceeds the value
predicted from an Arrhenius fit to the 7,(T) for T > Ta,” Cg(t) is
well fit by the same generic double-stretched-exponential functional
form

Co(t) = (1= A)exp [~ (t/7ae)™ ] + A exp [(~t/Tow)™"] (1)

that is often utilized to fit S(q, ) in this regime."” Here the nota-
tion used in Eq. (1) is chosen to emphasize that this is a very general
functional form that is designed to separate “fast” from “slow” relax-
ation mechanisms. The T, Stast> and sgow We obtain for Cg(t) are
close to those obtained by fitting the corresponding fast-f and «
relaxation processes of S(q,t), but the A(T) are somewhat larger.
Consistent with previous studies,”” ***" " the characteristic neigh-
bor lifetime 74y is much longer than 7,. We also find that the ratio
Tsow/ T« Varies substantially with T and peaks near Ty, where Ty is
a crossover temperature separating the high- and low-temperature
regimes of glass—formation.“ "7 On the other hand, 7y, remains
within a factor of order one of 7oy, and 7, remains within a factor of
order one of Timm, even as each of these quantities varies by roughly
5 orders of magnitude over our studied range of T. Van Hove
correlation functions evaluated at t = 7,(T) reveal that diffusion
remains strongly non-Gaussian on this timescale—increasingly so
as T decreases—owing to the persistence of large immobile-particle
clusters. Thus, we show that Cg(t) and y,(t) provide easily mea-
surable, semi-quantitative, spatially averaged measures of the slow
heterogeneous dynamics associated with immobile particles.

Il. METHODS

All simulations were conducted using the High Dimen-
sional Molecular Dynamics (hdMD) code.”*” To capture
generic supercooled-liquid behavior, we simulate the standard
Kob-Andersen model™ with a 2:1 ratio of large (A) to small (B)
particles. Particles i and j interact via the truncated and shifted

Lennard-Jones potential U(r) = Urj(r) — Ury(rc), where
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Uy(r) = 4€ij|:(0;j)12 - ((7:)6] )

As usual,;m ean = 1.0, eap = 1.5, egg = 0.5, 0aa = 1.0, o3 = 0.8,
and opp = 0.88 in units of the system’s characteristic energy and
length scales, and the cutoff radius r. = 2.50};.

Here, we focus on liquids in three spatial dimensions, with
periodic boundary conditions applied along each direction of cubic
simulation cells. We employ the 2:1 variant of the KA model rather
than the historically-more-widely-studied 4:1 variant because the
latter is prone to crystallization.”’ All results reported below will

be given in units of exa, 0aa, and the time scale T = \/maj,/eaa,

where all particles have mass m. The MD time step we employed
is dt = 7/125. All systems contain N = 1.67 x 10° particles and are
equilibrated at various constant temperatures 0.38 < T'< 1.0 and a
small positive pressure P = 0.01. In real units corresponding to liquid
argon, this pressure corresponds to P ~ 420 kPa, while our highest
temperature corresponds to T ~ 120 K.""** As is standard prac-
tice,”” we equilibrate systems for at least 1007, [defined using the
standard criterion S(g,7+) = 1/e] for each T before beginning the
measurements reported below.

Following Refs. 23-26 and 29-32, we define Cj(t) as the aver-
age fraction of neighbors present in particle i’s original first coor-
dination shell that are still present at time ¢. Then Cg(t) = (Cx(t))
is the average of this quantity over all particles, and the suscepti-
bility ys(t) = \/([C}(t)]z) ~ Cp(t)* captures the heterogeneity of
this metric. Previous studies of this quantity have defined C3(t)
as the average fraction of particle pairs with r;;(0) < Byoj; that also
have r;;(t) < B,0ij, where By was set to approximately correspond
to the first minimum of the pair correlation functions g;(r), and
B, ~ 1.2By. Here, particles i and j are considered neighbors at time
t if ri(t) < (5/4)2"0; ~ 1.40y for arbitrary t; this effectively sets
B, = B;.

We will compare the relaxation captured by Cg(t) and x, ()
to several other more-conventionally utilized relaxation metrics,
specifically:

e the mean-squared displacement A?(t) = (|7i(t) - 7:(0)[*)
and non-Gaussian parameter o (t) =3(|7i(¢)
-7(0)[)/(5[A*()]*) - 1,

o the self-intermediate scattering function S(g,t), averaged
over the range 7.55 < q < 7.75, i.e., overall g values that are
within 0.1/044 of the peak of the static structure factor S(q)
for T ~ Ty

o the overlap function f,(¢),'" here defined as the fraction of
particles that remain within ¢;;/2 of their initial positions;

o the average sizes Npop(#) and Nimm(#) of mobile- and
immobile-particle clusters; ' and

o the self-part of the van Hove correlation function Gi(r,t)
= N7'eY, 8(|7(t) - 7(0)] - r),*° where 8(x) is the Dirac
delta function.

To obtain a relatively simple theoretical picture, it is necessary
to extract characteristic timescales from the above relaxation met-
rics. Here, following previous studies,”'' we define the times ¢,
Tmob> and Timm as the peak times for a2 (#), Nmob(£), and Nimm (1),
and similarly, we define the time 7, as the peak time for y,(t).

ARTICLE pubs.aip.org/aipl/jcp

Results for all of these quantities are time-averaged over at least
ten “windows” of length 10*r for T > 0.42, six windows of length
10°7 (2.5x%10°7) for 0.41 < T < 0.42 (0.39 < T < 0.40), and three
windows of length 5 x 10° for T = 0.38.

Rigorously characterizing particles as “mobile” or “immobile”
is a non-trivial exercise. Here, we defined the mobile (immobile) par-
ticles as the 10% of particles that had the largest (smallest) maximal
excursions from their initial positions over the time interval [0, ¢]. As
in Ref. 43, this percentage was chosen because it maximized the peak
normalized average mobile-particle cluster size, i.e., the maximal
Niob (#)/Nrand> where Nipanq is the average size of clusters formed
by randomly selected particles.

Note that the fo (t) defined above is the self-overlap
function, i.e.,

H() = 52 ©lou/2 () ~A(O)]) ®

where ©® is the Heaviside step function. Reference 10
showed that the abovementioned four-point susceptibility
xa(t) = %BT( ([ffﬂ,ut(t)]z) - (fg%“t(t))2 ), where the mutual

overlap function fi"(t) given by
1NN

0= 4 3 lagy [0 A @)

i=1 j=1

is equal to the integral of the four-point position/time
correlation  function  G[#(0),7(t),7(0),7i(t)] over all
[7(0),7(£), 7%(0), 7,(¢)]. Tt also showed that f3'(¢) provides
the dominant contribution to fa'(¢), and that choosing a = 0.3
maximizes the heights 3" (T') of the peaks of y,(t). Many studies
that have used this cutoff have defined DH in terms of x,(t).
Moreover, it has been argued that y;,"*(T) scales with the charac-
teristic correlation lengths &,(T) of DH over time scales ¢ ~ 7, as
A8~ 5%, where the scaling exponent is material-dependent.” "’
Below, we will show that our alternative choice (i.e., a = 1/2) allows
us to more effectively characterize systems’ slow DH on time
scales t >> 7,.

Ill. RESULTS

A. Qualitative characterization of eight different
structural-relaxation metrics

Figure 1 summarizes the T- and t-dependence for five of the
metrics discussed above. All results shown in panels 1(a) and 1(b) are
similar to those reported in many previous studies,"”” but since they
set the stage for what will follow, we discuss them in some detail here.
Plateaus in both A%(¢) and $(g, t) begin to form as T drops below the
onset temperature for non-Arrhenius relaxation, T ~ 0.64; this cor-
responds to the emergence of a distinct fast f3 relaxation process with
a nearly T-independent relaxation time 74 and a slow « relaxation
process with a strongly T-dependent 7,. The separation between
these timescales upon further cooling exhibits a sharp increase as
T drops below Ty ~ 0.45. We will discuss how these estimates of T'a
and Ty were obtained in Sec. I1] B.

There are two notable differences between the behavior of
A%(t) and S(g,t) and that of fo(t) [panel 1(c)]. First, unlike the
former metrics, fov(t) exhibits single-step decay for all T. Second,
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FIG. 1. Three traditional measures of single-particle dynamics compared to two
measures of nearest-neighbor persistence. Panels (a)—(e), respectively, show
A%(1), S(q.1), kv (t), Ca(t), and yg (1) for systems over the temperature range
0.38 < T < 1.0. The color legend in panel (a) shows each T value. Dotted curves
in panels (b)—(d) show fits to Egs. (5)—(7).
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in contrast to previous studies that employed a =0.3 (Sec. II)
and found that the characteristic relaxation time 7,y defined
by fov(Tov) = 1/e was of order 7,, the plateaus in fo,(¢) shown
here extend to considerably longer times, indicating 7oy > 74. In
other words, throughout the plateau regimes suggested by the
measurement of particless mean-squared displacement and
self-intermediate scattering function, very few particles have moved
by even half their diameter. This is not surprising given that the cage
radius rege << 0ii/2, but it does raise the question of how to visualize
the physical relaxation process associated with these larger 7ov.

To begin answering this question, we now look at these systems’
Cs(t) [panel 1(d)]. At high and intermediate T, the Cg(t) exhibits
smooth, apparently single-timescale decays similar to those reported
in previous studies.”” %> For T < T, however, the Cg(t) exhibits
plateaus that lengthen rapidly with decreasing T, much like those
shown for A%(t), (g, t), and foy(t). These plateaus have not been
previously reported because Refs. 23-26 and 29-32 employed B, val-
ues, which were well above B, (Sec. 1), whereas here we employ B,
= B;. This difference introduces an additional relaxation mechanism
in our Cg(t) that was not captured in previous studies: in par-
ticular, particle-pair distances evolving back and forth across the
above-mentioned r;j < (5/4)2"°0; neighboring cutoff. Below, we
will argue that this mechanism is associated with fast § relaxation.

Beyond their plateau regimes, the decays of Cg(t) and fov(t)
closely track each other, indicating that particles losing their neigh-
bors roughly correspond to them moving by more than half their
diameters. This is not surprising from a qualitative point of view, but
as we will show below, it leads to an interpretation of the connection
of Cg(t) to other measures of heterogeneous relaxation dynam-
ics that is substantially different from those developed in previous
studies that employed a = 0.3."?*%" Note that panels 1(b)-1(d) also
show fits of S(g, t), fov(t), and Cg(¢) to Eq. (1), but before discussing
these, we will turn our attention to measures of heterogeneous
dynamics in these systems.

At the same high T for which S(g,t) and Cg(t) exhibit single-
timescale relaxation, x,(t) takes on an approximately log-normal
form [panel 1(e)]. As T drops below Ty, clear plateaus of x, ()
that mirror those of Cp(t) emerge. Beyond the plateau regime, the
heights xg™*(T) of the peaks in the x,(t) curves begin increasing
with decreasing T; this is consistent with the increasing contrast
between high-Cg(Tpona) and low-Cg(Tpond) regions reported in
Ref. 32. Also note that the gradual emergence of two-timescale decay
of S(g,t) and Cg(t), as T decreases, coincides with (1) a decrease in
the maximal slopes dy, /d[In(t)], (2) a reduction of the y, values at
which the inflection points in the x, (¢) curves occur, and (3) a rapid
increase in 7,. All of these trends indicate that Cp(t) and y,(t), as
defined in this paper, can serve as useful spatially averaged measures
of the slow DH associated with the relatively immobile particles.

Figure 2 shows results for three more metrics that are often
employed to characterize dynamical heterogeneity. In all panels,
the trends with decreasing T are consistent with many previ-
ous studies.” ' More specifically, the maximum values of a,(t),
Nmob(t), and Nimm(t), and the times t*, Tmep, and Timm at which
these maxima occur, each increase rapidly with decreasing T for
T < Tx. The increasing separation between fast DH timescales such
as t* and Ty, and slow DH timescales such as Timm has been
discussed extensively. ' However, as mentioned in the Intro-
duction, while most previous studies have focused on assigning a
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FIG. 2. Traditional measures of dynamical heterogeneity. Panels (a)—(c), respec-
tively, show az (t), Nmoo (), and Nimm (t) for all systems. Colors are the same as
in Fig. 1.

physical meaning to the fast timescales (e.g., showing that * ~ Tyob
~ T/D’"'"), here we will focus on the relatively slow particles. More
specifically, we will quantitatively relate Timm, which measures the
characteristic lifetime of immobile regions whose characteristic size
grows very rapidly with increasing T,'”'" to local, single-length-scale
neighbor-persistence timescales obtainable from measurements of
Cg(t) and y,(T).

B. Quantitative comparison of seven different
relaxation times

Next, we fit the data shown in Figs. 1(a)-1(c) to the common,
non-exponential functional form discussed above [Eq. (1)]. To avoid
ambiguity in the following discussion, we will first rewrite Eq. (1)
in ways that are specific to the three quantities of interest. For the
self-intermediate scattering function, we rewrite it as! 484

S(q,1) = (1= As) exp [~ (t/7p)"] + As exp[(~t/7)™],  (5)

where As is the well-known “non-ergodicity” parameter,”’ 78 and 14
are the fast § and « relaxation times, respectively, and sg and s, are
the associated exponents quantifying the degree of deviation from
exponential relaxation.”’ *’ This form should accurately describe
S(g,t) for temperatures T < Ta, where 7, > 73.

ARTICLE pubs.aip.org/aipl/jcp

For the overlap function, the fact that fo,(#) = 1 until particles
begin moving at least half their diameters away from their initial
positions allows us to set A = 1, and therefore to reduce the number
of parameters in Eq. (1) from five to two. Thus, we rewrite Eq. (1) as

for(t) = exp [(=t/7ov)™], (6)

where 7o is the relaxation time associated with this process and
Sov is the associated stretching exponent. The poor agreement of
this approximate functional form with simulation results for ¢ 5 10°
[Fig. 1(c)] is not a major concern for the purposes of this study
because we are focusing on the terminal relaxation. Note that this
issue could have been avoided by using fiv"(t) [Eq. (4)], which
exhibits a two-step decay for T $ Tx'" and can be fit using the same
functional form as Eqs. (1) and (5).

Finally, for the neighbor-persistence function, we rewrite
Eq. (1) as

Ca(t) = (1 - Ac) exp [~ (t/7r)™ ] + Ac exp [(—f/Tbond)Sb”"“]k )
7

Here, Ac plays a role similar to the non-ergodicity parameter; the
fast-relaxation parameters 7y and spg capture the behavior of
Cs(t)’s abovementioned fast decay mode, and the slow-relaxation
parameters Tpond and spond are the average nearest-neighbor lifetime
and associated stretching exponent discussed in Refs. 29 and 30.
Our best-fit values of the parameters in Eqs. (5)-(7), along with
uncertainty estimates, are given in the Appendix.

Before proceeding further, we define both the onset tempera-
ture Ta and the crossover temperature Tx. These temperatures are
typically estimated using the « relaxation times. T4 has tradition-
ally been defined™ as the temperature below which 7, increases
super-Arrheniusly with decreasing T and substantial dynamical het-
erogeneity emerges.” A precise criterion was given in Ref. 42, which
showed that defining T’y as the highest temperature for which 7o (T)
is 1% above its high-T Arrhenius fit value allows 74(T) to be iden-
tified with the “caging onset time” and to serve as a reference time
scale for structural relaxation and diffusion.

T has traditionally been defined™ with the critical temperature
T. of mode-coupling theory by fitting 7,(T) to its predicted power-
law divergence 7,(T) ~ (Tc — T)™?*’ over a limited temperature
range. Values of T. obtained in this fashion depend strongly on the
choice of temperature range over which 74(T) is fit to this functional
form,””°" however, 7, does not actually diverge at the fitted T,. An
alternative estimate of the crossover temperature Tx can be obtained
by finding the maximum of d*[In(7,)]/d(1/T)? on a Stickel plot®
or (roughly equivalently for systems exhibiting a fragile-to-strong
crossover™) by finding the intersection of the high-T and low-T
Arrhenius fits to 74(T).*® This definition of Ty is comparable to the
crossover temperature defined in the Generalized Entropy Theory
(GET)* that separates the high- and low-temperature regimes of
glass formation. Note that the GET also predicts a power-law vari-
ation of 7, over a limited T range and predicts the precise value of
this crossover temperature.

Figure 3 shows 7,(T) obtained from fitting our S(g, t) data to
Eq. (5). The data are consistent with a previous study of the KA
model’s 2:1 variant at P = 0,°* and all trends are similar to those
observed in many previous studies. Here, we emphasize two key
features. First, 7, increases by more than five orders of magnitude
(from ~ 0.24 to ~ 3.7 x 10%) as T decreases from 1.0 to 0.38. Second,
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FIG. 3. a relaxation times obtained by fitting S(g, t) to Eq. (5). Dashed lines show
fits of 7, (T) to the Arrhenius prediction zar(T) = 7o exp(Ear/T); the high- and
low-T fits intersect at T = Ty ~ 0.45. The dotted lines indicate 1/T and 1/Tx.

the procedures described above ™"’ respectively yield T4 ~ 0.64 and

« =~ 0.45; for reference, 74(Ta) ~ 0.62 and 74(Tx) ~ 12. Our esti-
mates of Ty and T are roughly consistent with the corresponding
estimates for the 4:1 KA model when P is small;*” note that the char-
acteristic temperatures of the Kob-Andersen model depend strongly
on pressure,’> and this should be borne in mind when comparing
our results to those from the many previous simulations of the KA
model that employed constant density. We will show below that this
estimate of Tx closely corresponds to two other distinctive features
in the temperature dependence of our systems’ relaxation dynamics.

Detailed results for As, Ac, Tgs Tfast> B> Sa> Sovs Sfasts and spong are
given in the Appendix. Here we emphasize that for all temperatures
that are low enough for relaxation to have a distinct two-step char-
acter (i.e., T < Ta), Trast and s are respectively close to 75 and sg.
This shows that the initial stage of Cg(¢)’s decay is closely associated
with the fast 8 relaxation.! We also find that speng ~ s« for T $ 0.5,
suggesting that neighbor persistence and « relaxation are similarly
heterogeneous in this regime.

Figure 4 shows results for the seven other relaxation times
defined above. Panel 4(a) compares the 74(T) obtained by fitting
S(g,t) to Eq. (5) to the two measures of fast DH shown in Figs. 2(a)
and 2(b). All results are similar to those reported in multiple previ-
ous studies.” "' The main features we wish to highlight here are that
(1) t* ~ Tyep for all but the lowest T, where T,y is larger; and (2)
both t* and 7,0, grow much slower than 74 with decreasing T.

Panel 4(b) compares these 74(T) t0 Timm [Fig. 2(d)], Ty, the Toy
obtained by fitting fov(¢) to Eq. (6), and the Tponq obtained by fitting
the Cg(t) data to Eq. (7). Three trends are apparent from examining
the relations between these quantities. First, as previously reported
in Refs. 29-32, 1, remains well below Ty,onq for all T. Second, in con-
trast to the results shown in panel 4(a), 74 also remains well below
the other three timescales for all T, and for high and intermedi-
ate temperatures, 7, grows slower with decreasing T. Third, while
Thond Femains on the order of 7oy for all T, 7,y appears to converge
to Thond from below as T decreases. This result is consistent with
the geometrically intuitive notion that particles losing their original
neighbors correspond to them moving by roughly half their dia-
meter away from their initial positions when caging is strong and
motion is hopping-dominated, i.e., at low T.

Panels 4(c) and 4(d), which, respectively, show the ratios of
Thond and 7y to the other timescales, illustrate the abovementioned
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FIG. 4. Comparison of seven different relaxation times 7, in 2:1 KA liquids at
P =0.01. Panels (a) and (b), respectively, compare the relaxation times associ-
ated with Cg(t) and S(g,t) to those associated with other metrics for fast and
slow DH, while panels (c) and (d), respectively, show the ratios of 7pong and 7,
to these times. The vertical dotted lines in panels (c) and (d) show 1/Tx, and the
horizontal dotted line in panel (d) shows 7, /7, = 1.
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relationships in more detail. Four key trends are apparent. First, the
ratios of Tyond and 7, to the fast-DH timescales t* and 7pop increase
steadily with decreasing T. The ratio of Tpong to these timescales
reaches (0(10%) at our lowest T = 0.38, showing that the much-
discussed decoupling” of the fast and slow relaxation timescales in
supercooled liquids also occurs for timescales associated with neigh-
bor persistence. Second, 0.3 < Ty/Timm < 1.2 and 1.0 < Tpond/Timm
< 5.2 over the entire range of T, even though all three quantities
increase by 5 orders of magnitude as T decreases from 1.0 to 0.38.
This shows that Cp(t) and y,(t) are closely associated with the
immobile-particle clusters. Third, the ratio Tpona/Tov remains within
the very narrow range 2.2 < Thond/Tov < 2.7 for all T > Ty, but this
ratio decreases more rapidly with decreasing T for T < Ty, reaching
~ 1.2 at our lowest studied T = 0.38.

The fourth trend evident in these panels is that the ratios
Thond/Ta a0d Thond/Timm closely track each other, and both appear
to peak at T ~ 0.48, which is only slightly above our estimated
Ty. Previous studies have established that Timm ~ 7a.'”' We find
that the ratio of these two quantities varies over the narrow range
6.5 < Timm/Ta < 11.5 despite the fact that each quantity varies by
5 orders of magnitude over our studied range of T. The peaks in
Thond/Timm and Tpond/Ta at T = Ty point to a secondary effect that is
not captured by the abovementioned connections between Tyong, Ty,
and Timm.

Peaks in Tpond/7« at intermediate T have not been previously
reported. They seem inconsistent with Fig. 20 of Ref. 32, which
reported Tpond/Ta that decreased monotonically with decreasing T
as both quantities varied over a much wider range than is considered
here. One plausible explanation for this apparent discrepancy is that
our method of estimating Tpeng [i-€., fitting Cg () to Eq. (7)] sepa-
rates fast from slow neighbor-decorrelation mechanisms and identi-
fies Tpona With only the latter. In contrast, previous studies,”” 2**%
all of which used B, ~ 1.2B; and most of which defined Tyong using
the criterion Cp(Tpona) = €' did not effectively do so. We found,
however, that the peak in Tyond/7a at T = Ty is actually more dra-
matic if we instead define these quantities using Cp(Tpond) = €
and $(g, 74) = e~*. This issue requires further study, but we empha-
size that our results for T < Tx are entirely consistent with those
presented in Ref. 32.

We believe that the peaks in Tpond/Timm and Tpond/T« are
directly associated with decoupling. Decoupling in an experi-
mental context is often associated with the “breakdown” of the
Stokes-Einstein scaling relationship D ~ ' between fluids’ mass
diffusion coefficient D and shear viscosity #.! This breakdown arises
when the relatively long timescales associated with the immobile
particles and structural relaxation (e.g., 7, and 7,) start growing
faster than the shorter timescales associated with the mobile parti-
cles and the average rate of molecular diffusion (e.g., Tmob and ¢*)
with decreasing T. It is qualitatively described by the “fractional”
Stokes-Einstein relation,*” a general power-law scaling relation t*
~ Té_g between these characteristic times, where (<1 is the
exponent characterizing the strength of decoupling.!'" Recent
work'******" has also connected decoupling directly to 75 and
related this basic molecular timescale to the much longer timescales
t* and 7,, which are in turn connected directly to the decoupling
of D and #. In particular, Yuan et al. found that the 4:1 KA model
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of strong decoupling. The solid line shows a fit of the data to t* ~ 71¢ (with
¢ = 0.40), while the vertical dashed line indicates 7, (Tx). In the inset, the curve
shows 7./t* for the same dataset shown in Fig. 4, while the vertical dotted line
shows 1/Ty.

obeys t* /15 ~ (T,x/‘rﬁ)lfq, with { ~ 0.26, for a wide range of densities

2,67

and pressures.”

As shown in Fig. 5, both the crossover to t* ~ 757 scaling
and the onset of rapidly increasing 7a/t* occur at T ~ Ty ~ 0.45 in
our systems. Thus, the peaks in Thond/7« and Thond/Timm, and the
subsequent decrease in these quantities with decreasing T, can be
interpreted as part of the crossover to the low-temperature (T < Tx)
regime of glass-formation.”” The { ~ 0.40 value reported here is
larger than that reported in Ref. 42 because our measurements of
7o and t* were obtained from the S(g,t) and a,(t) of all particles,
whereas those performed in Ref. 42 included the dynamics of A par-
ticles only, as is the common practice.”> Adopting this practice for
our systems decreases { to ~ 0.30 and shifts the crossover to t* ~ T;f(
scaling upwards, to T ~ 0.50. Here, we prefer to use the values asso-
ciated with all particles because metrics of heterogeneous dynamics,
such as Thond> Tmob»> and Timm, necessarily include all particles. How-
ever, the slightly higher estimate (i.e., T ~ 0.50) is also close to the
peaks in Tyond/Ta and Thond/Timm We find when Cp(#) and S(g, t) are
calculated for A particles only. Finally, it must be noted that the P
value we have chosen to employ (i.e., P = 0.01) is exceptionally low
in comparison to most previous studies, and the choice of P appar-
ently influences the point where the power law scaling sets in. This
phenomenon requires further study.

C. Connections to heterogeneous caging

Next, we connect the above results to heterogeneous caging.
In three spatial dimensions, the probability P(r,t) that a parti-
cle has moved a distance r away from its initial position after
a time t is P(r,t) = Gs(r,t)/(4nr*). According to Einstein’s the-
ory of Brownian motion, P(r,t) is Gaussian, and the central limit
theorem requires that P(r,t) become Gaussian after sufficiently
long times for a fluid in thermal equilibrium. At shorter times,
however, P(r, t) is distinctly non-Gaussian in a wide variety of glass-
forming liquids, including particulate systems near their jamming
transitions.”*"” The slow crossovers to Gaussian P(r,t) have been
directly associated”””" with the approach to ergodicity.
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FIG. 6. Normalized van Hove correlation functions evaluated at the ¢ = 7pong (T)
obtained by fitting Cg(t) to Eq. (7). The inset shows the Nimm[bond (T)]/Nrand
from Fig. 2(c). Colors are the same as in Fig. 1. Note that all trends remain the
same if these quantities are instead evaluated at t = 7, (T).

Exponential tails in P(r,t) taking the form Pg(r,t)
oc exp[-r/A], where A increases slowly with £,°” have been
claimed to be universal in systems where motion is hopping-
dominated.”””” These tails are known to correspond to the mobile
particles.ﬁ()”"z In contrast, the connection of non-Gaussian P(r,t) on
timescales t > 7, to immobile particles and slow DH remains rather
poorly characterized. In particular, P(r, t) has not yet been directly
related to Cg(t) or the other measures of slow DH discussed above.
Here, we do so.

Figure 6 shows that P[7, Toond(T)] becomes increasingly non-
Gaussian as T decreases. Two notable trends are evident. First, the
lengths of the exponential tails in P(r) increase rapidly with decreas-
ing T for all TS Ta. Since these tails correspond to the mobile
particles, this trend reflects the increasing Tuona/t* and Thond/Tmob
shown in Fig. 4(c). In other words, the tails correspond to highly
mobile particles that have hopped multiple times over the time inter-
val Tpond. Second, a prominent low-r peak develops as T drops below
Tyx. This is directly associated with the above-mentioned increas-
ing peak height of y,(t) [Fig. 1(e)], and more generally, with the
increasing spatial contrast between liquid-like mobile and solid-like
immobile regions discussed in Ref. 32. The inset shows that it is
also directly associated with the persistence of increasingly large
immobile-particle clusters. Our results indicate that diffusion does
not become fully Gaussian (and ergodicity is not recovered) until ¢ is
several times larger than ¢ = Tpona (7). While this conclusion is con-
sistent with those of Refs. 23-26 and 29-32, it had not previously
been supported so decisively.

To illustrate the connections between the various trends dis-
cussed above, Fig. 7 shows snapshots of the largest immobile-particle
cluster at t = 7,(T) for T = 0.38. This cluster contains 14 682 atoms,
i.e., over 85% of the N/10 immobile particles present in the system. It
exhibits a fractal structure familiar from previous studies examining
the moderately supercooled regime'"'"**"* and percolates along all
three directions. The left image color-codes particles by their maxi-
mal displacements Amax over the interval 0 < ¢ < 7,, while the right
image color-codes particles by their Cj(z,). While the two images
appear very similar, slightly brighter colors are apparent in the left
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FIG. 7. Snapshots of the largest (14 682-atom) immobile cluster at t = 7, (T) for
T = 0.38. Colors vary from purple to red in order of increasing Amax and in order
of decreasing Cg(7y).

image, indicating that relatively high-Ana.x particles are somewhat
more likely than relatively low-Cj; particles to be found on the sur-
face of the cluster. Note that more than 99% of the atoms in this
cluster have A(ty) = (|ri(1y) — 7i(0)|) < 0.3 and C(7y) > 0.75, indi-
cating that the low-r peak in P(r,t) (Fig. 6) is dominated by the
atoms in this cluster.

IV. DISCUSSION AND CONCLUSIONS

Understanding the dramatic slowdown of supercooled liquids’
dynamics with decreasing temperature T is severely hampered by
the fact that only a few of the relaxation metrics considered in the-
ories and simulations are readily measurable in experiments. For
example, measurements of the diffusion constant D and alpha relax-
ation time 7, can be used to investigate characteristic aspects of
glassy dynamics such as the breakdown of the Stokes-Einstein rela-
tion (D1, = constant),"” and modern probe-molecule-reorientation
experiments can provide a great deal of information about dynami-
cal heterogeneity by characterizing how the exponent f associated
with stretched-exponential relaxation functions of the common
form F(t) ~ exp[—(t/7)P] depends on the length and time scales
over which relaxation is probed,'”'* but such phenomenological
observational trends do not provide a clear physical understanding
of the molecular origin of these phenomena.

Here, we have shown that a simple neighbor-persistence met-
ric, Cg(t), which is readily experimentally accessible in colloidal
glassformers,”** can help resolve this issue. In fact, Cp(t) and its
variance y;(t) provide near-quantitative metrics for the slow, spa-
tially heterogeneous dynamics that occur over timescales from 10
to 1007, and length scales far above those of individual atoms’
first coordination shells. More specifically, Cp(t) and y;(t) pro-
vide spatially-averaged measures of the dynamics associated with
immobile-particle clusters.

We showed that the peak time 7, for the susceptibility x, (t)
associated with the spatial heterogeneity defined by Cg(t) remains
on the order of Timm (the characteristic lifetime of immobile-particle
clusters), even as both of these quantities varied by roughly 5 orders
of magnitude over our studied range of T. Examining the Van Hove
correlation functions evaluated at t = 7,(T) reveals that diffusion
remains strongly non-Gaussian on this timescale—increasingly so
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as T decreases—owing to the persistence of large immobile-particle
clusters over this timescale.

Similarly, we showed that the bond lifetime T,ong associated
with the terminal decay of Cg(t) remains on the order of the
“overlap time” 7o, over which a typical particle moves by at least
half its diameter away from its initial position, even as both of these
quantities (much like 7, and Timm) varied by roughly 5 orders of
magnitude. A key step in making this connection was our decision to
usea = 1/2in Egs. (3) and (4), rather than the smaller value (a = 0.3)
used in previous studies relating neighbor persistence to heteroge-
neous dynamics. In particular, choosing a = 1/2 made Toy ~ Tpond, @
relationship that is qualitatively different than the Tov ~ T4 < Thond
relationship that is observed when a = 0.3.'%*%"

Finally, we showed that the ratio Tpond/7a varies substantially
and non-monotonically with T, peaking at T ~ Ty. Recall that 7,
starts to increase sharply, and decoupling of fast and slow relaxation
processes occurs, as T drops below the crossover temperature Ty."”
We believe that Tpend/7« decreases with decreasing T for T < Tx
because the contribution of fast processes to « relaxation diminishes
faster with decreasing T than the contribution of these processes to
neighbor decorrelation, and hence, 7, begins growing faster with
decreasing T than Tyong. This hypothesis is consistent with Scal-
liet et al’s data suggesting that 7, — Tyond from below as T — Ty
and their argument that Thond/7« decreases with decreasing T (for
T < Tx) because the “coarsening” time scales Tcoarse ~ Thond OVer
which immobile regions get dissolved from the outside by mobile
regions are less strongly T-dependent than 7.

How might one further examine the connections between Tpond
and other characteristic relaxation times in supercooled liquids? One
intriguing possibility suggested in Ref. 32 is that Tpong provides an
easily accessible estimate of the “exchange time” Tex, PP which
is the average time it takes for a “fast” (high-mobility) region to
become “slow” (low-mobility) and vice versa. While 7. is concep-
tually straightforward, mapping it onto a specific observable that
can be measured in simulations, let alone experiments, has proven
challenging.'* Traditionally, it has been estimated using four-point
correlation functions.””"””*” A recently published study used a
novel theoretical approach to calculate 7ex from two-point spa-
tiotemporal correlations of local relaxation rates y(7,¢t).”” It would
be very interesting to use this approach to evaluate how Tpond/Tex
varies with T.

We conclude by summarizing the broader implications of this
study for understanding supercooled liquids’ dynamics. First, our
results demonstrate the limitations of attempting to understand
these dynamics using a single relaxation time (e.g., 74) or even
two characteristic relaxation times (e.g., both 7, and t* or 15G6).
At the very least, one should also examine a third relaxation time
that is substantially larger than 74, €.g., Thond OF Tex. A more fruit-
ful approach, however, may be to focus on the entire spectrum
for various relaxation processes rather than reducing these to their
characteristic time scales.

Second, we showed that Tpong can depend differently on tem-
perature than 7, despite the facts that (i) Cp(¢) and S(g,t) can be
fit by the same functional form, and (ii) doing so yields g ~ 74
for T < Ta. Further work is required to obtain a more mechanis-
tic and microscopic understanding of the connections between «
relaxation and neighbor decorrelation. Since the most obvious dif-
ference between these two processes is that nearby particles moving
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in the same direction contribute to the former but not the latter,
examining the differences between the self and coherent intermedi-
ate scattering functions (i.e., comparing how particles diffuse away
from their initial positions to how they diffuse away from their initial
neighbors) may shed light on why this is so. Alternatively, one might
attempt to relate neighbor decorrelation to the recently discovered
“slow Arrhenius process”;“‘w much like Tpong, this process’ charac-
teristic relaxation time tsap is substantially larger than 7, at high T

but grows slower than 7, with decreasing T.
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APPENDIX: QUANTITATIVE DETAILS

Additional results obtained by fitting the S(g,t), fov(#), and
Cs(t) data to Egs. (5)-(7) are shown in Fig. 8. Panel 8(a) shows our
results for the A(T). Figure 1 had already made it clear that the A(T)
are much larger for Cg(T) than they are for S(g,t), but these data
show that they are also both nearly T-independent for T 2 0.7. For
larger T, these data are less reliable because the nearly single-step
nature of the decays of S(g,t) and Cg(#) produces ambiguities in
fits of these data to Eqs. (5) and (7).

Panel 8(b) shows that the temperature dependence of the “beta”
relaxation times 7g and g is much weaker than it is for slow
timescales such as 7o and Tpong. This is expected from the well-
known weak temperature dependence of f3 relaxation.! In stark
contrast to results for the various 7y, the ratio Tfast/Tﬁ remains
nearly constant (and of order one) for all T for which the decay of
S(g,t) and Cg(¢) clearly has a two-step character, i.e., forall T < Ta.
Note that, as mentioned above, in contrast to previous studies,””
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FIG. 8. As, Ac, 73, Ttast, Stast» Sg» Sov, aNd Spong Values obtained by fitting simulation data for S(q, t), &v(t), and Cg(t) to Egs. (5)-(7). Statistical uncertainties for these

parameters are comparable to the scatter of the plotted data.

here we did not suppress the fast decay mode of Cg(t) by
including a “padding” of the distance cutoff for particles to be
considered neighbors.

Panel 8(c) shows our results for the fast and slow stretch-
ing exponents. Our results for sg(T) are in qualitative agreement
with several previous studies.”” " We find that sg tracks and is
comparable to sz over the entire range of T, further supporting
our identification of the fast decay mode of Cg(t) with 8 relax-
ation. Since the dynamics of 8 relaxation are quite complex and
remain a topic of active study, it would be interesting to inves-
tigate Cg(t)’s fast decay mode further, with the aim of explain-
ing how both modes arise from the local event dynamics of the
glassy cage.s ©57 We also find that Spong is nearly T-independent; it

remains below sov for all T and is comparable to s, for T S Tx. «
relaxation and neighbor persistence being similarly spatially het-
erogeneous in this T regime is physically reasonable if both are
controlled primarily by the immobile-particle clusters.'"”’® Note
that the decrease in s, with decreasing T is expected to reverse
as T drops below Tg;” " it would be very interesting (although
computationally expensive) to determine whether this is also true
for spond.

Finally, Table I presents numerical values of the seven relax-
ation times discussed in Sec. III B. Note that these times are likely
to be substantially shorter than the corresponding times in the
other recent study of the 2:1 KA model’s heterogeneous dynamics at
these T" because that study employed NVT-ensemble simulations

TABLE I. Equilibrium densities p = N/V and best-fit values for the seven relaxation times discussed in Sec. I/l B. All times
are given to two significant figures because the estimated statistical uncertainties on most quantities are of order 1%. The
uncertainties for 7o and 7imm are larger for T < 0.4 owing to the limited sampling, while those for 7o, and t* are larger for

T > 0.9 where DH is weak.
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T P Thond Ty Ta Tov Timm Tmob t*

1 0.933 2.7 0.52 0.24 1.2 1.6 1.2 0.84
0.9 1.016 3.6 0.76 0.29 1.8 2.0 0.88 0.88
0.8 1.085 5.5 1.2 0.37 26 24 1.2 1.0
0.75 1.116 7.2 1.6 0.42 33 3.2 1.4 1.2
0.7 1.147 10 2.2 0.49 4.2 3.8 1.4 1.3
0.65 1177 15 3.2 0.60 5.7 46 1.6 1.6
0.6 1.206 24 5.2 0.80 8.8 6.4 2.0 22
0.55  1.235 42 9.4 1.2 16 11 3.2 3.2
0.525 1.248 62 14 1.6 24 15 44 42
0.5 1263 1.0 x 10 23 2.4 38 24 5.4 6.4
049 1269 13x10° 29 2.9 48 25 7 7.2
048 1274 1.7x10° 38 3.7 63 38 8.4 9.4
047 1280 22x10° 51 5.0 87 57 11 13
046 1285 3.1x10° 73 7.3 1.3 x 10? 66 15 15
045 1291 47x10° 1.2x10° 12 20x 10> 1.1x 10? 22 23
044 1297 7.5x10° 1.9x10° 21 33%x 10 1.9 x 10 29 34
043 1302 13x10° 33x10° 49 6.2x 10> 3.5x 10° 56 60
042 1308 27x10° 7.0x10*> 12x10*> 14x10° 99x10° 99 92
041 1314 65x10° 1.7x10° 35x10° 3.6x10° 25x10° 27x10>° 1.9x 10
0.4 1319 20x10* 56x10° 14x10° 13x10* 13x10* 84x10*> 4.2 x 10
039 1325 73x10* 22x10* 69x10° 54x10* 6.1x10* 29x10° 1.0x10°
038 1330 32x10° 99x10* 37x10* 26x10° 32x10° 97x10° 3.1x10°
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performed at a fixed density p = N/V = 1.40733, which is significantly
higher than any of the densities considered here. The KA model’s
dynamics slow down rapidly with increasing pressure, particularly
for low P.">*
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