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ABSTRACT
We examine the Sastry (athermal cavitation) transitions for model monatomic liquids interacting via Lennard-Jones as well as shorter- and
longer-ranged pair potentials. Low-temperature thermodynamically stable liquids have ρ < ρS except when the attractive forces are long-
ranged. For moderate- and short-ranged attractions, stable liquids with ρ > ρS exist at higher temperatures; the pressures in these liquids
are high, but the Sastry transition may strongly influence their cavitation under dynamic hydrostatic expansion. The temperature T∗ at
which stable ρ > ρS liquids emerge is ∼0.84ϵ/kB for Lennard-Jones liquids; T∗ decreases (increases) rapidly with increasing (decreasing)
pair-interaction range. In particular, for short-ranged potentials, T∗ is above the critical temperature. All liquids’ inherent structures are
isostructural (isomorphic) for densities below (above) the Sastry density ρS. Overall, our results suggest that the barriers to cavitation in most
simple liquids under ambient conditions for which significant cavitation is likely to occur are primarily vibrational-energetic and entropic
rather than configurational-energetic. The most likely exceptions to this rule are liquids with long-ranged pair interactions, such as alkali
metals.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0023236., s

I. INTRODUCTION

Repulsive forces dominate the structure of liquids over a wide
range of pressures and temperatures, allowing many of their prop-
erties to be understood using “universal” models.1 On the other
hand, attractive forces become increasingly important near freez-
ing and vaporization transitions, particularly for dynamic phenom-
ena.1–3 In general, varying the range and shape of the interatomic
pair potential U(r) profoundly alters both the cluster-level struc-
ture and the macroscopic properties of liquids.4 Such effects can
be understood in terms of the energy landscape (EL).5 Hard-core-
like repulsions and short-range attractions produce rough ELs with
many basins, while softer repulsions and longer-range attractions
produce opposite trends.6

One ubiquitous phenomenon for which the details of attrac-
tive interactions are particularly important is cavitation, the for-
mation of gas bubbles within liquids experiencing tensile stress.
Cavitation is entirely absent in systems with purely repulsive
or short-range-attractive interactions because these systems lack
distinct liquid and gas phases. Classical nucleation theory (CNT)

performs particularly poorly for cavitation, typically underestimat-
ing the bubble nucleation rate by many orders of magnitude. Oxtoby
and Evans argued7 that the disagreement between CNT and non-
classical nucleation theories (as well as experiments) gets pro-
gressively worse as the range of interparticle attractions increases
because CNT’s assumption that bubbles are homogeneous (i.e.,
have a uniform density and pressure) becomes increasingly inac-
curate. However, few other studies have systematically examined
how cavitation phenomenology varies with the range and shape
of U(r).

Cavitation under typical real-world conditions is inhomoge-
neous; it tends to nucleate at impurities, especially gaseous impu-
rities.8 Homogeneous cavitation commonly occurs in sonicated liq-
uids9,10 and behind shock fronts.11 On the other hand, simulations
have suggested that even in macroscopically homogeneous systems,
cavitation preferentially nucleates in regions with lower density12

and/or higher temperature.13 These results imply that accurately
predicting inhomogeneity within the bulk liquid phase is a pre-
requisite to developing quantitatively accurate microscopic theories
of cavitation. Developing such theories is very difficult because it
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requires detailed knowledge of liquids’ ELs’ topographies, which are
chemistry-dependent.4

Accordingly, many of the recent advances in our theoretical
understanding of cavitation have come from particle-based sim-
ulations. Most studies of homogeneous cavitation have employed
Lennard-Jones pair interactions.12–21 Some of these have focused
on comparison of equilibrium simulation results to various classical
and nonclassical theories, for various thermodynamic state points
(various densities ρ and temperatures T).12–17 Others have exam-
ined dynamic cavitation under hydrostatic expansion from a single
(ρ, T).18–21

Sastry et al. demonstrated the existence of a cavitation transi-
tion in liquids’ energy landscapes.12 The Sastry density ρS is the den-
sity ρ at which the pressure PIS(ρ) within liquids’ inherent structures
(IS) is minimal. For ρ > ρS, liquids’ IS are homogeneous and mechan-
ically stable: ∂PIS/∂ρ > 0. For ρ < ρS, liquids’ IS consist of coexisting
dense and void regions—i.e., they are cavitated—and are mechani-
cally unstable: ∂PIS/∂ρ ≤ 0. Thus, by studying liquids’ Sastry tran-
sitions, we can learn more about how their cavitation is influenced
by their underlying ELs. Altabet et al. recently examined the Sastry
transition of model glass-forming liquids in much greater detail;22,23

see Sec. II. However, they did not study simple monatomic liquids,
which readily crystallize and in which cavitation and crystallization
can complete.

In this paper, we examine the Sastry transition in monatomic
liquids with a wide variety of interaction potentials. We find
that in liquids with short- and moderate-ranged attractive forces,
most ambient conditions for which cavitation is likely to occur—
temperatures between the triple point and critical point, pres-
sures between the stretched-liquid spinodal and atmospheric—
correspond to densities that are well below ρS. In contrast, liquids
with long-ranged attractive forces, such as those formed by alkali
metals, have a broad region of thermodynamic phase space where
cavitation is likely to occur and ρ > ρS. Taken together, these results
suggest that the barriers to cavitation in most (but not all) sim-
ple monatomic liquids under ambient conditions for which signif-
icant cavitation is likely to occur arise primarily from the vibrational
energy and entropy rather than the configurational energy of the EL
basins they are most likely to occupy. We also find that all liquids’
IS are isostructural (have nearly identical local structures away from
the voided regions) for ρ < ρS but are isomorphic (exhibit a hidden
scale invariance24) for ρ > ρS.

II. THEORETICAL BACKGROUND
The Sastry transition can be better understood by placing it

in context with CNT. Cavitation bubbles in stretched model liq-
uids are typically empty or nearly empty.20 Consider nucleation of
an empty spherical bubble of radius R in a liquid with density ρ
and free-energy density f at temperature T. According to CNT,
the free-energy barrier to nucleation of this bubble is ΔF(ρ, T)
= −(4πR3/3)f (ρ, T) + 4πR2γ(ρ, T), where we allow the surface ten-
sion γ to depend on ρ and T but not R. Writing f = u − Ts, where
u and s are the liquid’s potential energy and entropy densities, and
breaking ΔF(ρ, T) into its configurational and vibrational parts, one
can write5,25

ΔF(ρ,R,T)
4πR2 = Δconf(ρ,R) + Δvib(ρ,R,T) − TΔent(ρ,R), (1)

where

Δconf(ρ,R) = γconf(ρ) − uconf(ρ)
R
3

,

Δvib(ρ,R,T) = γvib(ρ,T) − uvib(ρ,T)
R
3

,

Δent(ρ,R) = γs(ρ) − [sconf(ρ) + svib(ρ)]
R
3

.

(2)

Here, γs(ρ) is the entropic part of γ arising from (e.g.) changes in the
ordering of a liquid near a free surface. Thus, the free-energy bar-
rier to cavitation has three components: configurational-energetic
(Δconf), vibrational-energetic (Δvib), and entropic (−TΔent).

According to Sastry et al.’s picture,12 when ρ = ρS and T = 0,
the sum of the first two terms in Eq. (1) goes to zero in the limit R
→ 0. Liquids with ρ < ρS can cavitate by proceeding directly down
the same basin of their EL they currently occupy, whereas liquids
with ρ > ρS cannot; their cavitation must involve basin hopping. The
minimum of PIS(ρ) at ρ = ρS corresponds to an onset of mechan-
ical instability under increasing tension that is (in principle) the
athermal limit of the stretched-liquid spinodal, i.e., the T → 0 limit
of the density ρc(T) at which the free-energy barrier to cavitation
vanishes.

Altabet, Stillinger, and Debendetti recently showed22 that the
system-size dependence of PIS(ρ) is consistent with finite-size
rounding of a first-order athermal phase transition. The transi-
tion from cavitated to homogeneous IS at ρ = ρS is a feature
that is wiped out by the anharmonic intrabasin distortions that
occur upon returning to the initial liquid thermodynamic state;
this structure-obscuring behavior of intrabasin vibrational motion
is consistent with the presence of a positive free-energy barrier
for cavitation in the liquid.26 They also argued that in the ther-
modynamic limit, kinks in f conf(ρ, T) and f vib(ρ, T) at ρS, respec-
tively, produce discontinuous decreases and increases in PIS(ρ) and
Pvib(ρ, T) as ρ exceeds ρS. Since the liquid-state pressure Pliq(ρ, T)
= PIS(ρ) + Pvib(ρ, T) + ρkBT is continuous at ρS, these disconti-
nuities must cancel. In Ref. 23, they showed that these phenom-
ena are not universal. Strongly cohesive systems (i.e., systems with
sufficiently deep and wide pair-potential wells) show the above-
mentioned behavior. In these systems, the discontinuity in PIS(ρ)
is in fact associated with a first-order athermal phase transition
between homogeneous and cavitated IS. Weakly cohesive systems,
while still possessing the Sastry minimum in PIS(ρ), have a system-
size-independent PIS(ρ) that suggests no such first-order transition is
present.

To the best of our knowledge, Refs. 22 and 23 are the only two
published particle-based simulation studies that have systematically
examined how varying the pair-interaction potential affects cavita-
tion; see the Appendix for further details. However, neither of these
studies isolated the effects of the attractive interactions’ range from
the effects of their strength (i.e., the depth of the pair-potential well).
Below, we will do so.
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III. MODEL AND METHODS
One widely used generalization of the Lennard-Jones potential

is the “Mie” potential,

Un(r) = ϵ[(
σ
r
)

2n
− 2(

σ
r
)
n
]. (3)

Here, ϵ and σ are characteristic energy and length scales, and the
exponent n characterizes the steepness of the repulsive and attractive
interactions.Un(r) is a general repulsive–attractive potential that can
be used to model systems ranging from alkali metals (n ≃ 4) to noble
gases (n ≃ 6) to colloids and buckyballs (n ≃ 16).27–29 Although the
Morse potential Uα(r) = ϵ(exp[−2α(r − σ)] − 2 exp[−α(r − σ)])
is probably a more accurate model for some of these systems,28,29

Lennard-Jones-type potentials are more widely used to model simple
liquids.

Typical dynamical simulations employ a truncated-and-shifted
version of Un(r). Simulations including energy minimizations that
find systems’ IS, however, require modifying Un(r) in such a way
that both Un(r) and ∂dUn/∂r go to zero at some cutoff radius.6

This modification is typically achieved by multiplying Un(r) by some
function f that varies from 1 to zero over the range ri ≤ r ≤ ro,
where ri and ro are inner and outer cutoff radii. We use the form
of f developed by Mei et al.,30

f (x) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1, x ≤ 0

(1 − x)3
(1 + 3x + 6x2

), 0 ≤ x ≤ 1

0, x > 1

, (4)

where x = (r − ri)/(ro − ri). We choose an n-dependent ri using the
criterion Un[ri(n)] =−ϵ/100, which yields ri(n) = [1−

√
99/10]−1/nσ

and ro(n) = 11ri(n)/10. Thus, the interaction potential employed in
this study is

U∗n (r) = Un(r)f [
r − ri(n)

ro(n) − ri(n)
]. (5)

U∗n (r) is plotted for selected n in Fig. 1, and values of ro(n) are given
in Table I. These choices ensure that any effects of imposing the
smoothed cutoff [i.e., of the differences between U∗n (r) and Un(r)]
are small.

Comparing these potentials to best-fit analytic pair potentials
for noble gases31,32 and metals28 makes it clear that the range of
n examined here is sufficiently wide to capture the behavior of
all neutral monatomic liquids. While quantitatively capturing the
behavior of non-noble-gas elemental materials requires the use of
3-body and higher-order interaction energies,31,33 our focus here is
on qualitative trends.

Previous studies25,34 have shown that the character of the EL
basins (i.e., inherent structures) preferentially sampled by liquids
can change qualitatively as T increases or decreases. Hence, when
comparing results for systems interacting via different pair poten-
tials, it is helpful to define a dimensionless temperature T̃ = kBT/E∗,
where E∗ is a system-dependent characteristic energy scale, and
then compare systems at the same T̃. The maximum basin depth

FIG. 1. Pair-interaction potentials Un(r) for selected n. For n = 4, multiple neigh-
bor shells contribute to the thermodynamics of both solids and liquids. For n = 8,
the thermodynamics are dominated by the nearest-neighbor shell. The inset shows
a comparison of U6(r) to best-fit analytic potentials for noble gases obtained
from many-body expansions of the interaction energies obtained from ab initio
calculations.31

for N-particle systems interacting via the pair potential U∗n (r) is
NEFCC(n), where EFCC(n) is the binding energy of atoms in per-
fect FCC crystals at zero pressure and temperature (Table I). We
set E∗(n) = EFCC(n)/EFCC(6) and compare the inherent structures of
liquids equilibrated at various temperatures in the range 0.5 ≤ T̃
≤ 1.5, i.e., EFCC(n)/2EFCC(6) ≤ kBT ≤ 3EFCC/2EFCC(6). We chose this
E∗(n) to facilitate comparison of our results to the extensive liter-
ature on cavitation in standard Lennard-Jones (n = 6) systems: for
these systems, 0.5 ≤ T̃ ≤ 1.5 corresponds to the temperature range
0.5 ≤ kBT/ϵ ≤ 1.5.

We generate equilibrated liquids with a wide range of densi-
ties and their IS using standard molecular dynamics and energy-
minimization techniques. N = 4000 atoms, each of mass m, are
placed in cubic simulation cells, and periodic boundary condi-
tions are applied along all three directions. Temperature is main-
tained using a Langevin thermostat. After thorough equilibration,
NVT-ensemble runs are continued while periodic snapshots of
the liquids’ configurations are taken.35 These snapshots are then

TABLE I. Outer cutoff radii ro(n), nearest-neighbor distances a(n), binding energies
EFCC(n), and densities ρFCC(n) of the minimal-energy FCC lattices for the interaction
potential U∗n (r) used in this study [Eq. (5)]. Note that the n → ∞ limits of these
quantities are ro(∞) = 1.1σ, a(∞) = σ, EFCC(∞) = −6ϵ, and ρFCC(∞) =

√

2σ−3.

n ro(n)/σ a(n)/σ |EFCC(n)|/ϵ ρFCC(n)σ3

4 4.134 1 0.870 031 17.931 95 2.147 39
4.5 3.568 5 0.917 008 13.053 51 1.833 98
5 3.172 4 0.944 147 10.532 04 1.680 34
6 2.659 0 0.970 688 8.180 256 1.546 24
7 2.344 0 0.985 107 7.228 15 1.479 33
8 2.132 5 0.992 505 6.719 65 1.446 49
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energy-minimized using the Polak–Ribiére conjugate gradient algo-
rithm36 to find the liquids’ IS. All simulations are performed using
LAMMPS.37

We will compare systems’ Sastry densities ρS(n, T̃) to their
spinodal vaporization densities ρv(n, T̃) and their equilibrium crys-
tallization densities ρx(n, T̃). We estimate ρv(n, T̃) as the density for
which liquids’ P(ρ, T̃) are minimized, i.e., the density below which
the liquid phase is mechanically unstable. No ρv values are reported
for (n, T̃) that lack clear minima; estimating these systems’ vaporiza-
tion densities is more difficult38,39 and is not essential here. We esti-
mate ρx(n, T̃) using the Stevens–Robbins protocol.40 Specifically, we
start from a perfect FCC crystal at a given ρ and equilibrate it at the
given T̃ for 400τ. We then freeze half the system in place while equi-
librating the other half at kinetic temperature 3T̃/2 for another 400τ
to create coexisting liquid and crystalline regions within the simu-
lation cell. Finally, we unfreeze the crystalline half, reset the liquid
half’s kinetic temperature to T̃, and integrate the system forward in
time for at least another 104τ. Crystallization occurs over this period
if ρ ≥ ρx(n, T̃). Strictly speaking, ρx(n, T̃) is the density at which the
Helmholtz free energies of the liquid and crystalline phases are equal.
Note that the ρv(n, T̃) and ρx(n, T̃) obtained using these methods
are rather sensitive to both system size and the choice of potential
cutoff.38,39 However, our focus in this paper is on qualitative trends,
and none of the results presented below would be altered by small
changes in ρv or ρx.

IV. RESULTS
We begin by presenting results of 4 ≤ n ≤ 8 Mie liquids’ and

their inherent structures’ equations of state. All data in Figs. 2–4 and
6 are averaged over 25 statistically independent samples. All densi-
ties discussed below are in units of σ−3, and all pressures are in units
of ϵσ−3.

Figure 2(a) shows all systems’ average liquid-state pressures
Pliq(ρ) for T̃ = .75. For this T̃, all 4 ≤ n ≤ 8 have clearly observable
minima in P(ρ) and, hence, clearly defined ρv . Furthermore, all n
have P(ρv) < 0 and, hence, can be prepared as metastable “stretched”
liquids. The basic features of the data shown here are all expected.
Longer-range attractions allow liquids to sustain much larger tensile
stress, and the narrowing of the range of densities and pressures for
which liquids are at least metastable as n increases is consistent with
narrowing the pair-potential well. Since these liquids span a very
wide range of densities and pressures, we conclude that T̃ = .75 is
a good value with which to begin our detailed analyses.

Figure 2(b) shows these systems’ average PIS(ρ). The trends
shown here are qualitatively consistent with those reported in Refs.
12, 22, and 23. The Sastry densities ρS and pressures PS = PIS(ρS),
respectively, increase and decrease with decreasing n as the repulsive
forces soften and attractive forces become longer-ranged (Table II).
The kinks in PIS(ρ) at ρ = ρo and ρ = ρS both become more
dramatic with decreasing n; here, ρo < ρS is the density below
which all IS are cavitated and at which ∂PIS/∂ρ drops sharply.22

While PIS(ρ) has large finite-N corrections for strongly cohe-
sive (e.g., low-n) systems,22,23 and we do not attempt to address
finite-system-size-related issues in this paper, one should remain
aware that the N- and n-dependences of the phenomena we discuss
below are likely coupled.

FIG. 2. Equations of state for T̃ = .75 liquids and their inherent structures. Solid
curves in (a) and (b), respectively, show Pliq(ρ) and PIS(ρ) for ρv(n, T̃) ≤ ρ
≤ ρx(n, T̃), while dotted curves show these quantities in metastable liquids with
ρ > ρx(n, T̃). The inset in (a) shows a zoomed-in view of the same data, and
the inset in (b) is a zoomed-in version of the 6 ≤ n ≤ 8 data that highlights how
ρS > ρx for these systems.

Figure 2 also illustrates a phenomenon that has not been pre-
viously discussed: the interaction of the Sastry and crystallization
transitions. Dotted curves indicate results for metastable liquids with
ρ > ρx. For long-ranged potentials (n < 6), ρS is well below ρx for
this T̃. For Lennard-Jones and shorter-ranged potentials, however,
ρS > ρx—increasingly so as n increases. If ρS > ρx for a given T̃,
the entire range of ρ for which liquids are thermodynamically sta-
ble at that T̃ lies below the Sastry density. Dynamic cavitation of
these liquids under further hydrostatic expansion seems unlikely to
be governed directly by the Sastry transition.

Another important question in determining the Sastry transi-
tion’s relevance for a given system is: what is Pliq(ρS, T)? If Pliq(ρS, T)
is positive and well above the liquid’s vapor pressure Pvap(ρS, T),

TABLE II. Sastry densities and pressures for N = 4000 Mie liquids with integer n, for
4 ≤ n ≤ 8.

Quantity n = 4 n = 5 n = 6 n = 7 n = 8

ρSσ3 1.52 1.34 1.30 1.28 1.22
PSσ3/ϵ −16 −8.2 −5.5 −4.6 −2.9

J. Chem. Phys. 153, 184504 (2020); doi: 10.1063/5.0023236 153, 184504-4

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

TABLE III. Mean liquid-state pressures at the Sastry density: ⟨Pliq(ρS, T̃)⟩σ3
/ϵ. Val-

ues for metastable supercooled liquids (systems with ρS > ρx ) are italicized, and “–”
indicates that the liquid is unstable at this T̃. Note that Pliq(ρS, T) and Pliq(ρS, T̃) both
increase with increasing n for 4 ≤ n ≤ 7, then decrease for n ≳ 7 as Un(r) approaches
the sticky-hard-sphere limit.41 The temperatures T̃0(n) for which Pliq(ρS, T̃) = 0
are given in Table IV.

T̃ n = 4 n = 5 n = 6 n = 7 n = 8

0.5 −5.4 −1.0 0.34 . . . . . .
0.75 −1.5 2.0 3.4 5.2 3.2
1.0 2.0 4.6 6.0 8.1 5.9
1.25 4.1 7.4 8.4 11 8.3
1.5 8.2 9.3 11 13 11

cavitation of liquids with ρ = ρS and temperature T is highly unlikely.
On the other hand, if Pliq(ρS, T) ≲ Pvap(ρS, T), cavitation is far
likelier. For these systems, the energy barriers for cavitation at
ρ = ρS − δρ should be significantly smaller than those for cavita-
tion at ρ = ρS + δρ is (where 0 < δρ ≪ ρS),22 so cavitation is likely
to be tightly coupled to—and effectively nucleated by—local density
or temperature fluctuations within the liquid.12,13

Table III lists values of Pliq(ρS, T̃) for selected n and T̃.
Pliq(ρS, 0.5) is small or negative for all n; the Sastry transition is likely
to strongly influence cavitation in these liquids. However, T̃ = 0.5
liquids are metastable for n ≥ 5. In these systems, local density fluc-
tuations to ρ = ρS + δρ are likely to nucleate crystallization and
local density fluctuations to ρ = ρS − δρ are likely to nucleate cav-
itation; this competition gives rise to very complicated physics.14 As
T̃ increases, P(ρS) increases rapidly, but remains negative or small
for a wider range of T̃ in systems with longer-ranged attractions.
For T̃ ≳ 1, however, Pliq(ρS) is well above Pvap(ρS) for all n. It seems
unlikely that the Sastry transition has much influence on these liq-
uids’ quiescent-state mechanical properties, but it may still strongly
influence their cavitation under dynamic hydrostatic expansion.

The above results suggest that examining how ρS(n, T̃) com-
pares to ρv(n, T̃) and ρx(n, T̃) for a wide range of n and T̃ can shed
a great deal of light on how the Sastry transition influences cavita-
tion in liquids with a wide range of pair interactions. Figure 3 shows
phase diagrams for n = 4, 6, and 8. For perspective, all plots also

show ρatm(T̃), the equilibrium density at the “atmospheric” pressure
Patm = 0.01kBT/σ3. Here, ρatm and Patm are not rigorous quantities.
A more thorough study would replace ρatm(n, T̃) with ρvl(n, T̃), the
density of a Mie liquid that is in equilibrium with its own vapor, but
calculations of this quantity are highly sensitive to N and ro38,39 and
are beyond our present scope. Nevertheless, the ρatm(T̃) curves and
their discontinuous drops at the boiling points T̃boil(n)42 provide
context for what we will describe below.

As expected,12 ρS is independent of T̃ within the accuracy of our
measurements, for all n. Otherwise, the topology of these phase dia-
grams depends strongly on n. To further clarify how these topologies
relate to cavitation, we define four characteristic regions of thermo-
dynamic phase space. Region 1 consists of all (ρ, T) for which ρS < ρ
< ρx and ρ > ρatm. Region 2 consists of all (ρ, T) for which ρS < ρ
< ρx and ρ < ρatm. Region 3 consists of all (ρ, T) for which ρv < ρ
< ρS and ρ < ρatm. Finally, region 4 consists of all (ρ, T) for which
ρv < ρ < ρS and ρ > ρatm. Cavitation is least likely in region 1 and
most likely in region 3. The clearest-cut scenario for the Sastry tran-
sition to play the dominant role in controlling cavitation is dynamic
hydrostatic expansion from regions 1 or 2 into region 3. It may
also strongly influence quiescent cavitation in the lower portions of
region 2 and upper portions of region 3.

Next, we define two characteristic temperatures for these sys-
tems. T̃∗is the temperature at which ρS = ρx. For all T̃ < T̃∗, ρS > ρx;
the Sastry transition lies in a region of phase space where (for the
given T̃) the thermodynamically stable phase is crystalline. T̃∗ is
also the lower boundary of region 1. T̃0 is the temperature at which
Pliq(ρS, T̃) = 0. For ρ ≃ ρS and T̃ well above T̃0, cavitation is unlikely
because the thermal barriers to it (Δvib and −TΔent) are large. Values
of T̃∗ and T̃0 for all systems are given in Table IV.

For n = 8 liquids, T̃∗ is well above Tboil
42 and almost certainly

above the critical temperature T̃crit.43 For n = 7 liquids, T̃∗ ≃ Tboil.42

Thus, it seems unlikely that the Sastry transition heavily influences
cavitation in (initially) thermodynamically stable liquids with short-
ranged pair interactions. This result is consistent with the weak,
broad minima in these systems’ PIS(ρ) shown in Fig. 2. Overall, these
liquids’ behavior is similar to that of Altabet et al.’s weakly cohesive
liquids.23

All thermodynamically stable n ≃ 6 liquids lack region 2.
Dynamic hydrostatic expansion of n ≃ 6 liquids that are initially
in region 1 passes through the upper (high-pressure) regions of
region 4 and reaches region 3 only for densities that are well

FIG. 3. Phase diagrams for (a) n = 4, (b) n = 6, and (c) n = 8. Here, ρ̃ = ρ/ρFCC(n). Dashed curves indicate ρS and ρatm for metastable liquids with ρ > ρx(T̃). Roman
numerals indicate the “regions” described below.
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TABLE IV. Characteristic reduced temperatures for Mie liquids. “. . . ” indicates that
T̃∗ is below our lowest simulated value (0.375 for n = 4) or that T̃0 is below the
lowest T̃ for which these liquids are metastable.

Quantity n = 4 n = 5 n = 6 n = 7 n = 8

T̃∗ . . . 0.51 0.84 1.20 1.33
T̃0 0.85 0.60 0.47 . . . . . .

below ρS. Thus, it also seems unlikely that the Sastry transition
heavily influences cavitation in (initially) thermodynamically stable
monatomic n ≃ 6 liquids such as noble liquids (Fig. 1). However,
this result also indicates that the free-energy barriers to cavitation in
these systems are primarily vibrational-energetic and entropic rather
than configurational-energetic, i.e., they are dominated by Δvib and
−TΔent. Moreover, the Sastry transition may, indeed, play a major
role in supercooled n ≃ 6 liquids, e.g., Lennard-Jones liquids with
T̃ ≲ 0.6. As discussed above, these liquids occupy a large region of
thermodynamic phase space; note that Lennard-Jones liquids that
are metastable with respect to both crystallization and cavitation can
be prepared for T̃ as low as 0.35.14,15

For n = 4, regions 1 and 2 are both very large. There is a
large region of thermodynamic phase space where dynamic hydro-
static expansion can take these liquids from region 1 through region
2 into region 3, or directly from region two into region 3. We
expect that the Sastry transition is likely to play a crucial role in
these systems, for both hydrostatic-expansion-driven cavitation and
density-fluctuation-driven cavitation (particularly in region 2). For
T̃ < 0.85, these liquids have negative pressure at ρ = ρS. Thus, Sastry
and Altabet et al.’s picture suggests that n = 4 stretched liquids are
(meta)stabilized against cavitation by both vibrational-energetic and
entropic barriers (Δvib and −TΔent, respectively).

Previous studies of Lennard-Jones systems have shown that
rather than continuing all the way down to T = 0, the stretched-
liquid spinodal ρc(T) is interrupted either by the liquid–crystal coex-
istence curve ρx(T),19 the Kauzmann curve ρK(T),44 or by a (poten-
tially ideal) glass transition curve ρig(T)45,46 as T decreases. Our
results for n ≥ 5 are consistent with those of Ref. 19, i.e., these liquids’

FIG. 4. Equations of state for n = 6 (Lennard-Jones) liquids and their inherent
structures. Solid curves show Pliq(ρ) for ρv(T̃) ≤ ρ ≤ ρx(T̃), dotted curves show
Pliq(ρ) in metastable liquids with ρ > ρx(T̃), and dashed curves show PIS(ρ). The
vertical dashed line indicates the mean ρS = 1.31σ−3. The inset in (b) shows a
zoomed-in view of the same data.

ρv(T) intersect their ρx(T) at finite T. For n = 4, however, determin-
ing how ρc(T) behaves at low T will require careful investigation of
larger-N systems.

For the remainder of this section, we will focus on n = 6
(Lennard-Jones) systems since they best capture the physics of the
majority of real atomic liquids. Figure 4 shows the equations of state
for n = 6 liquids and their IS for a wide range of T̃. Figure 4(a)
shows that for our choice of system size and cutoff radius, metastable

FIG. 5. Snapshots of typical inherent
structures for (left panel) ρ = 0.97ρS and
(right panel) ρ = 1.03ρS, for T̃=1.375.
The snapshots are plotted at a common
scale.
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stretched liquids can be prepared for T̃ ≲ 1. It illustrates how liq-
uids with ρ = ρS are metastable (supercooled) for T̃ < T̃∗ and also
how the range of densities and pressures over which these liquids
are stable increases rapidly with increasing T̃. The Sastry transition is
most likely to be relevant when these liquids are isochorically cooled
(for ρ < ρS) or dynamically hydrostatically expanded (from an ini-
tial ρ > ρS). Figure 4(b) illustrates how these liquids’ IS’ equations of
state depend on T̃. As expected for simple liquids, the T̃-dependence
of PIS(ρ) is very weak. The only exception to this trend—PIS(ρ) for
T̃ = .5 is lower than it is for T̃ ≥ .75 for 1.26 ≳ ρσ3

≲ 1.31—lies in a
region of phase space where the liquid is metastable.

We conclude our analyses by switching our focus from the
Sastry transition’s macroscopic features to its microscopic features.
Figure 5 shows snapshots for typical n = 6, T̃ = 1.375 inherent
structures for densities slightly below and above ρS. As reported in
Refs. 12, 22, and 23, IS are inhomogeneous and cavitated for ρ < ρS
but homogeneous for ρ > ρS. The left-hand snapshot shows an IS
containing a single large void. It clearly has a significant degree
of short-ranged crystal-like order. This cannot arise in the bidis-
perse mixtures employed in Refs. 22 and 23, which were designed to
suppress crystallization. The right-hand snapshot shows a homoge-
neous IS. It also shows some signs of local structural order, e.g., the
well-defined second-nearest-neighbor shells that are often present
in dense simple liquids’ IS,47,48 but the degree of ordering present is
unclear.

Examining the IS′ structure in greater detail yields additional
insights. Figure 6 shows their pair correlation functions g(r) for
T̃ = .75 and T̃ = 1.375. For T̃ = .75 [ Fig. 6(a)], all systems have peaks
in g(r) at r ≃ an, r ≃

√
3an, and r ≃ 2an, where an = [

√
2/ρFCC(n)]1/3

is the equilibrium nearest-neighbor distance in the ground-state
crystals (Table I). These distances are characteristic of random-
close-packed (RCP) order.49 The lower-density systems show a small
additional peak at r ≃

√
2an, which is the second-nearest-neighbor

distance in FCC crystals. Overall, the results indicate that these liq-
uids’ IS are isostructural: except for the void surfaces, they have the
same density and kth-nearest-neighbor distances as the ground-state
crystal.

Data for T̃ = 1.375 [Figs. 6(b) and 6(c)] appear similar at first
glance, but are critically different in one respect. For ρ < ρS, the
pattern is the same as that for T̃ = .75; g(r) has peaks at r ≃ an,
r ≃
√

3an, and r ≃ 2an. The height of these peaks increases slowly
with decreasing ρ because IS for ρ < ρS are inhomogeneous. At higher
densities, however, the pattern is very different; the heights of the
peaks are ρ-independent, but their positions are ρ-dependent. Specif-
ically, the second- and third-nearest-neighbor distances decrease
with increasing ρ.

Liquids at different (ρ, T) whose pair correlation functions col-
lapse under the scaling r → ρ1/3r, i.e., have the same g(ρ1/3r), are
“isomorphic.”1 Isomorphism implies that the kth-nearest-neighbor
distances scale with the typical intermonomer distance aρ = ρ−1/3.
If, on the other hand, the kth-nearest-neighbor distances are
ρ-independent, the g(r) curves will collapse but the scaled g(ρ1/3r)
curves will not. Figure 6(d) shows the scaled pair correlation func-
tions g(ρ1/3r) for our T̃ = 1.375 systems. Clearly, they collapse for
ρ > ρS. Here, we have highlighted results for T̃ = 1.375 in Figs. 5
and 6 because the wider range of densities with ρS < ρ < ρx for this
T̃ allowed the nature of the collapse to be clarified, but

FIG. 6. Pair correlations in IS of n = 6 systems at (a) T̃ = 0.75 and [(b–d)]T̃
= 1.375. (c) is a zoomed-in version of (b). Here, ρldl = 4ρx (6, 1.375)/5. (d) shows
the scaled pair correlation function g(ρ1/3r). For ρ < ρS, lower-density systems
have slightly larger g(r) for small r because these systems are inhomogeneous.

similar collapses occur for other T̃. In particular, they also occur
for T̃ = 1 and 1.125, i.e., they also occur for temperatures below
the atmospheric-pressure boiling point. Analogous results hold for
other n. We therefore conclude that Mie-liquid IS for ρ > ρS(n, T̃)
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are, indeed, isomorphic. They possess essentially the same order;
the main ρ-dependence of this order is that the characteristic kth-
nearest-neighbor distances are proportional to aρ = ρ−1/3.

“Isomorph” curves in (ρ, T) phase space along which a given
system is isomorphic play a very important role in liquid-state
physics; for example, the freezing and melting lines of “Roskilde-
simple” liquids are isomorphs.24 Dyre et al. have shown that on
isomorphs, Roskilde-simple liquids have the same pressure–energy
correlations, dynamics, and excess entropy, as well as the same equa-
tion of motion in the reduced coordinates ρ1/3 r⃗N .1,24 Although Mie
potentials do not meet the formal criteria for Roskilde-simplicity,50

the fact that their liquids’ ρ > ρS IS are isomorphic suggests that
their IS’ equation of state may also be an isomorph, albeit one of
a different character given that it is a curve ρ(P) rather than a curve
ρ(T) as is the case for freezing and melting lines. More generally,
the sharp contrast between their ρ < ρS isostructural IS and their
ρ > ρS isomorphic IS is further evidence that the Sastry transition
is a useful concept for improving our fundamental understanding of
cavitation.

V. DISCUSSION AND CONCLUSIONS
In this paper, we studied the Sastry transition in monatomic

Mie liquids. We showed that for short-ranged pair interactions (n
≳ 7), thermodynamically stable liquids with ρ > ρS exist only at
reduced temperatures T̃ where pressures are high, making cavitation
unlikely. Indeed, the minimum T̃ for which such liquids are found
are above the liquids’ “atmospheric”-pressure boiling temperatures,
and probably above their critical temperatures. The Sastry transition
is unlikely to a play a major role in the “weakly cohesive”23 liquids’
physics.

Thermodynamically stable liquids with small or negative pres-
sures and ρ > ρS exist only when the pair interactions are long-ranged
(n ≲ 5). In these systems, local density fluctuations to ρ = ρS − δ are
likely to significantly enhance cavitation. More generally, the Sas-
try transition likely plays a crucial role in these systems’ cavitation
under dynamic hydrostatic expansion. A prominent group of ele-
ments with such long-ranged pair interactions is the alkali metals.
CNT is particularly inaccurate for systems with long-ranged attrac-
tive forces, but much of this inaccuracy results from the failure of
approximations CNT typically makes, such as the assumptions that
cavities are uniform and have the same properties as the bulk gas,
interfaces are atomically thin, and that γ does not depend on R or T.7

The n = 4 Mie potential studied here and the Morse potential with
α ≃ 3.2 model alkali metals only roughly,27,28 but follow up stud-
ies using realistic many-body potentials33 combined with analyses
employing theoretical models that relax CNT’s typical assumptions7

may lead to crucial insights into the nature of cavitation in these
systems.

All thermodynamically stable Lennard-Jones (n = 6) liquids
with T̃ ≲ 0.84 have ρ < ρS, suggesting that the Sastry transi-
tion is unlikely to heavily influence their cavitation under dynamic
hydrostatic expansion. The majority of previous simulation stud-
ies of the cavitation of these liquids12–21 have explored this regime.
However, this result also indicates the free-energy barriers to cavi-
tation in these liquids are vibrational-energetic and entropic rather
than configurational-energetic, i.e., that the barriers are dominated

by the Δvib − TΔent term in Eq. (1). This raises a fundamental ques-
tion: are ρ < ρS liquids stabilized (or metastabilized) against cavita-
tion primarily by Δvib or −TΔent? Δent is not easy to calculate and
hence the ratio |Δvib/TΔent| has been little studied, but it can be
calculated using state-of-the art methods;51 these calculations have
shown that the entropic term can be important even at moder-
ate temperatures. Combining such calculations with a separation of
these liquids’ equation of state P(ρ, T) into their configurational and
vibrational contributions Pconf(ρ) and Pvib(ρ, T)22,52 might provide
the data necessary to answer this question.

For T̃ ≳ 0.84, we showed that thermodynamically stable
Lennard-Jones liquids with ρ > ρS exist, but the ambient pressures
at ρ = ρS are high, indicating that cavitation at these temperatures is
likely only for densities well below ρS. However, we also found that
metastable supercooled n ≲ 6 liquids with ρ ≳ ρS and low ambient
pressures P ≲ Patm occupy a broad region of thermodynamic phase
space, at least for the small system size considered here. In such
systems, cavitation competes with crystallization, giving rise to com-
plicated physics14 that is beyond our present scope. Again, it would
be very interesting to further examine the degree to which the Sastry
transition influences cavitation in this regime, using either coarse-
grained or more realistic models. Our results suggest that it plays a
major role.

The Sastry transition is well-known to correspond to the tran-
sition of IS′ macroscopic structure from cavitated to homogeneous.
By studying model monatomic liquids, we found that it also cor-
responds to a sharp transition in IS’ microscopic structure. IS for
ρ < ρS are isostructural: they have a locally RCP order, with kth-
nearest-neighbor distances that are ρ-independent. In contrast, IS
for ρ > ρS are isomorphic: they also have a locally RCP order, but
with kth-nearest-neighbor distances that scale with the character-
istic interparticle separation aρ ≡ ρ−1/3. The fact that this result
holds for all n we studied suggests that it may hold for the IS
of most monatomic liquids that lack strongly directional interac-
tions.1,24 At the very least, this isostructural–isomorphic dichotomy
may be useful in developing novel EL-based microscopic theories of
cavitation.
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APPENDIX: INTERACTION POTENTIALS
EMPLOYED BY ALTABET ET AL.

References 22 and 23 employed Kob–Andersen53 and Wahn-
ström54 glass-forming binary mixtures of particles interacting via
force-shifted versions of the “n-6” pair potential,

UA
n−6(r) =

ϵ
n − 6

[6 ⋅ 2n/6(
σ
r
)
n
− 2n(

σ
r
)

6
]. (6)

Their force-shifting protocol was

Ufs(r) = {
UA

n−6(r) −U
A
n−6(rc) − (r − rc)U

′
(rc), r < rc

0, r > rc.
(7)

Reference 22 compared results for n = 7 and n = 12 systems with
rc = 3.5σ and showed that differences between these systems were
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primarily quantitative rather than qualitative. Reference 23 com-
pared results for n = 7 systems with various 1.4σ ≤ rc ≤ 3.5σ and
showed that systems with rc < 1.7σ (rc > 1.7σ) are weakly (strongly)
cohesive.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon request.

REFERENCES
1J. C. Dyre, J. Phys.: Condens. Matter 28, 323001 (2016).
2L. Berthier and G. Tarjus, Phys. Rev. Lett. 103, 170601 (2009).
3H. Tong and H. Tanaka, Phys. Rev. Lett. 124, 225501 (2020).
4J. P. K. Doye and D. J. Wales, Science 271, 484 (1996).
5F. H. Stillinger and T. A. Weber, Phys. Rev. A 25, 978 (1982).
6D. J. Wales, Energy Landscapes: Applications to Clusters, Biomolecules and Glasses
(Cambridge Molecular Science, 2004).
7D. W. Oxtoby and R. Evans, J. Chem. Phys. 89, 7521 (1988).
8R. E. Appel, J. Acoust. Soc. Am. 48, 1179 (1970).
9R. D. Finch, R. Kagiwada, M. Barmatz, and I. Rudnick, Phys. Rev. 134, A1425
(1964).
10H. Maris and S. Balibar, Phys. Today 53(2), 29 (2000).
11J. M. Dewey, in Blast Effects: Physical Properties of Shock Waves, edited by
I. Sochet (Springer International Publishing, 2018), pp. 37–62.
12S. Sastry, P. G. Debenedetti, and F. H. Stillinger, Phys. Rev. E 56, 5533 (1997).
13Z.-J. Wang, C. Valeriani, and D. Frenkel, J. Phys. Chem. B 113, 3776 (2009).
14V. G. Baidakov, K. Bobrov, and A. S. Teterin, J. Chem. Phys. 135, 054512 (2011).
15V. G. Baidakov and K. S. Bobrov, J. Chem. Phys. 140, 184506 (2014).
16V. G. Baidakov, J. Chem. Phys. 144, 074502 (2016).
17R. Angélil, J. Diemand, K. K. Tanaka, and H. Tanaka, Phys. Rev. E 90, 063301
(2014).
18T. Kinjo and M. Matsumoto, Fluid Phase Equilib. 144, 343 (1990).
19V. G. Baidakov and S. P. Protsenko, Phys. Rev. Lett. 95, 015701 (2005).
20A. Y. Kuskin, G. E. Norman, V. V. Pisarev, V. V. Stegailov, and A. V. Yanilkin,
Phys. Rev. B 82, 174101 (2010).
21Y. Cai, J. Y. Huang, H. A. Wu, M. H. Zhu, W. A. Goddard III, and S. N. Luo,
J. Phys. Chem. Lett. 7, 806 (2016).
22Y. E. Altabet, F. H. Stillinger, and P. G. Debenedetti, J. Chem. Phys. 145, 211905
(2016).
23Y. E. Altabet, A. L. Fenley, F. H. Stillinger, and P. G. Debenedetti, J. Chem. Phys.
148, 114501 (2018).
24J. C. Dyre, J. Phys. Chem. B 118, 10007 (2014).

25P. G. Debenedetti and F. H. Stillinger, Nature 410, 259 (2001).
26F. H. Stillinger, private communication (2020).
27J. H. R. Clarke, W. Smith, and L. V. Woodcock, J. Chem. Phys. 84, 2290 (1986).
28D. J. Wales, L. J. Munro, and J. P. K. Doye, J. Chem. Soc., Dalton Trans. 5, 611
(1996).
29F. Calvo, J. P. K. Doye, and D. J. Wales, Nanoscale 4, 1085 (2012).
30J. Mei, J. W. Davenport, and G. W. Fernando, Phys. Rev. B 43, 4653 (1991).
31P. Schwerdtfeger, N. Gaston, R. P. Krawczyk, R. Tonner, and G. E. Moyano,
Phys. Rev. B 73, 064112 (2006).
32O. R. Smits, P. Jerabek, E. Pahl, and P. Schwerdtfeger, Phys. Rev. B 101, 104103
(2020).
33Y. Li, E. Blaisten-Barojas, and D. A. Papaconstantopoulos, Phys. Rev. B 57,
15519 (1998).
34S. Sastry, P. G. Debenedetti, and F. H. Stillinger, Nature 393, 554 (1998).
35The varying steepness of the potentials (Fig. 1) requires an n-dependent MD
timestep dt(n) for maximum efficiency. For T̃ ≤ 1, we choose the criterion

dt(n) = 6
√

2/[125ω(n)], where ω(n) = σ
ϵτ

√
∂2Un(r)

∂r2 ∣r=σ =
√

2n
τ is the char-

acteristic vibration frequency and τ =
√

mσ2/ϵ is the Lennard-Jones time unit.
The prefactor 6

√
2/125 sets dt(n) = 6τ/(125n) [e.g., dt(6) = 0.008τ], which is suffi-

ciently small to obtain converged results for all n. For T̃ > 1, we use slightly smaller
timesteps dt = 9τ/(250n).
36E. Polak and G. Ribiére, Rev. Fr. Imformmat Rech. Opertionelle 3, 35 (1969).
37S. Plimpton, J. Comput. Phys. 117, 1 (1995).
38E. A. Mastny and J. J. de Pablo, J. Chem. Phys. 127, 104504 (2007).
39S. Toxvaerd, Condens. Matter Phys. 18, 13002 (2015).
40M. J. Stevens and M. O. Robbins, J. Chem. Phys. 98, 2319 (1993).
41R. J. Baxter, J. Chem. Phys. 49, 2770 (1968).
42The drops in ρatm(T̃) shown in Fig. 3 occur in liquids that are superheated; T̃boil
measured in this way are above the equilibrium boiling temperatures.
43J. M. Cailol, J. Chem. Phys. 109, 4885 (1998).
44F. H. Stillinger, P. G. Debenedetti, and T. M. Truskett, J. Phys. Chem. B 105,
11809 (2001).
45S. Sastry, Phys. Rev. Lett. 85, 590 (2000).
46S. S. Ashwin, G. I. Menon, and S. Sastry, Europhys. Lett. 75, 922 (2006).
47D. S. Corti, P. G. Debenedetti, S. Sastry, and F. H. Stillinger, Phys. Rev. E 55,
5522 (1997).
48T. M. Truskett, S. Torquato, S. Sastry, P. G. Debenedetti, and F. H. Stillinger,
Phys. Rev. E 58, 3083 (1998).
49S. Torquato, T. M. Truskett, and P. G. Debenedetti, Phys. Rev. Lett. 84, 2064
(2000).
50T. B. Schrøder and J. C. Dyre, J. Chem. Phys. 141, 204502 (2014).
51G. Menzi and C. Dellago, J. Chem. Phys. 145, 211918 (2016).
52F. Sciortino, J. Stat. Mech.: Theory Exp. 2005, P05015.
53W. Kob and H. C. Andersen, Phys. Rev. E 51, 4626 (1995).
54G. Wahnström, Phys. Rev. A 44, 3752 (1991).

J. Chem. Phys. 153, 184504 (2020); doi: 10.1063/5.0023236 153, 184504-9

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1088/0953-8984/28/32/323001
https://doi.org/10.1103/physrevlett.103.170601
https://doi.org/10.1103/PhysRevLett.124.225501
https://doi.org/10.1126/science.271.5248.484
https://doi.org/10.1103/physreva.25.978
https://doi.org/10.1063/1.455285
https://doi.org/10.1121/1.1912258
https://doi.org/10.1103/physrev.134.a1425
https://doi.org/10.1063/1.882962
https://doi.org/10.1103/physreve.56.5533
https://doi.org/10.1021/jp807727p
https://doi.org/10.1063/1.3623587
https://doi.org/10.1063/1.4874644
https://doi.org/10.1063/1.4941689
https://doi.org/10.1103/physreve.90.063301
https://doi.org/10.1016/S0378-3812(97)00278-1
https://doi.org/10.1103/physrevlett.95.015701
https://doi.org/10.1103/physrevb.82.174101
https://doi.org/10.1021/acs.jpclett.5b02798
https://doi.org/10.1063/1.4959846
https://doi.org/10.1063/1.5019274
https://doi.org/10.1021/jp501852b
https://doi.org/10.1038/35065704
https://doi.org/10.1063/1.450391
https://doi.org/10.1039/dt9960000611
https://doi.org/10.1039/c1nr10679a
https://doi.org/10.1103/physrevb.43.4653
https://doi.org/10.1103/physrevb.73.064112
https://doi.org/10.1103/physrevb.101.104103
https://doi.org/10.1103/physrevb.57.15519
https://doi.org/10.1038/31189
https://doi.org/10.1051/m2an/196903r100351
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1063/1.2753149
https://doi.org/10.5488/cmp.18.13002
https://doi.org/10.1063/1.464213
https://doi.org/10.1063/1.1670482
https://doi.org/10.1063/1.477099
https://doi.org/10.1021/jp011840i
https://doi.org/10.1103/physrevlett.85.590
https://doi.org/10.1209/epl/i2006-10194-5
https://doi.org/10.1103/physreve.55.5522
https://doi.org/10.1103/physreve.58.3083
https://doi.org/10.1103/physrevlett.84.2064
https://doi.org/10.1063/1.4901215
https://doi.org/10.1063/1.4964327
https://doi.org/10.1088/1742-5468/2005/05/p05015
https://doi.org/10.1103/physreve.51.4626
https://doi.org/10.1103/physreva.44.3752

