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The effects of entanglement and chain orientation on strain hardening in glassy polymers are
separated by examining mixtures of chains with different lengths. Simulations show that the
orientation of a molecule of a given chain length is the same in monodisperse systems and
bidisperse mixtures, even when entangled and unentangled chains are mixed. In addition, the stress
in mixtures is equal to the weighted average of the stresses in monodisperse systems. These results
indicate that chains contribute independently to strain hardening, that chain orientation is
determined by local interactions with the surrounding glass, and that entanglements play at most an
indirect role in strain hardening in the range of strains typically studied. We discuss these results in
the context of recent theories. © 2009 American Institute of Physics. �doi:10.1063/1.3276800�

I. INTRODUCTION

The mechanical performance and failure modes of
glassy polymers are strongly affected by strain hardening; an
increase in the stress needed to deform systems as the strain
increases. There has been great interest in understanding the
mechanisms of strain hardening so that it can be predicted
and optimized for applications. Recent studies have chal-
lenged the traditional view that entanglements between poly-
mer chains control strain hardening, and suggest that orien-
tation of individual chains plays the dominant role. This
paper uses simulations of polymer mixtures to separate the
roles of entanglements and orientation.

The most widely used1,2 theories of strain hardening are
based on rubber elasticity. They assume that entanglements
between polymer chains act like chemical cross-links in a
rubber and that strain hardening arises from the decrease in
entropy of an affinely deforming entanglement network.3

The stress is written as

���̄� � �flow + GRg��̄� , �1�

where �flow is the plastic flow stress, GR the “strain harden-

ing modulus,” �̄ the stretch tensor describing the macro-
scopic deformation, and g a dimensionless function that de-
scribes the reduction in chain entropy. This approach has had
much success in fitting experimental stress strain curves, but
the fits seem inconsistent with the underlying microscopic
model, particularly in terms of the magnitude and tempera-
ture dependence of GR.4 Another apparent difficulty in the
approach of Refs. 1 and 2 is the separate, independent treat-
ment of GR and �flow, which ignores any potential contribu-
tion of plastic deformation to strain hardening.

A number of recent experiments and simulations have
examined the origins of these difficulties.5–17 One realization
is that the two terms on the right hand side of Eq. �1� are of

similar magnitude and must arise from similar mechanisms.
Experiment, theory, and simulations all show that �flow and
GR are linearly related when pressure, T or strain rate is
varied.10,15,16,18 This connection explains the large magnitude
of GR and the fact that it grows with decreasing
temperature4,5 as is typical for the plastic flow stress. A direct
connection between �flow and GR has been established in
the athermal limit �T→0�, where both contributions to the
stress are given by a single scaling factor times the rate
at which interchain bonds break during local plastic
rearrangements.12,13

Simulations also show that strain hardening occurs in
polymers that are too short to form the entangled network
that is assumed in rubber elasticity theories.12–14,17 Moreover,
the strain hardening in these unentangled systems can be
mapped to that of entangled chains if the macroscopic defor-

mation �̄ in Eq. �1� is replaced12,13 by an effective stretch

tensor �̄eff that describes the orientation of individual chains,

���̄� = �flow + GR
0g��̄eff� , �2�

where GR
0 is the value of GR in the long-chain limit. The

orientation of entangled chains is consistent with an affine

deformation, �̄eff= �̄. For unentangled systems the orientation

is consistent with a subaffine deformation by �̄eff.
The above findings support the notion that entangle-

ments play an indirect role and that strain hardening is pro-
duced by the increased rate of local plastic rearrangements
that are needed to maintain chain connectivity as chains
orient.12,13,19 In contrast, other recent experiments5,20 suggest
that entanglements play a central role. They find that GR is
directly proportional to the entanglement density �e in both
pure systems and polymer mixtures. However, there are
other explanations for this correlation. For example, an in-
crease in chain stiffness increases �e �Ref. 21� but also
straightens the chains, so that more plastic rearrangements
are required to maintain chain connectivity.13,17,22a�Electronic mail: robert.hoy@yale.edu.
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In this paper we examine strain hardening of polymer
mixtures. Using polymers with different chain lengths but
the same interactions, stiffness, etc. allows us to isolate the
roles of entanglements and orientation. The simulation re-
sults show that the orientation of chains plays the dominant
role and that the response of mixtures has a surprisingly
simple mean-field form. The variation in chain orientation
with macroscopic stretch is nearly independent of the length
of surrounding chains. In addition, the stress in mixtures is a
simple weighted average of results for pure systems. These
results suggest that strain hardening can be modeled as a sum
of contributions from individual chains as they are deformed
by interactions with the surrounding glass and produce local
plastic rearrangements in the glass to maintain their connec-
tivity.

II. POLYMER MODEL AND METHODS

Molecular dynamics �MD� simulations are performed
using a coarse-grained bead-spring polymer model.23 All
monomers have mass m and interact via the truncated and
shifted Lennard-Jones potential

ULJ�r� = 4u0��a/r�12 − �a/r�6 − �a/rc�12 + �a/rc�6� , �3�

where rc=1.5a is the cutoff radius and ULJ�r�=0 for r�rc.
Covalent bonds between adjacent monomers on a chain are
modeled using the finitely extensible nonlinear elastic
�FENE� potential

U�r� = − 0.5kR0
2 ln�1 − �r/R0�2� , �4�

with the canonical23 parameter choices R0=1.5a and k
=30u0 /a2. The equilibrium covalent bond length is l0

=0.96a. We consider semiflexible chains with an angular po-
tential Ubend=kbend�1−cos����, where � is the angle between
consecutive bond vectors along a chain. All quantities are
expressed in units of the molecular diameter a, binding en-
ergy u0, and characteristic time �LJ=�ma2 /u0. Periodic
boundary conditions are imposed, with periods Li along di-
rections i=x, y, and z.

Simulations are performed using the same protocols as
in Refs. 11–13. A rapid quench with cooling rate
0.002� / �kB�LJ� is applied to well-equilibrated melts,24 pro-
ducing glasses at the desired temperature T. The rapidity of
the quench suppresses aging and strain softening at small
strains. As in experiments,25 we find that the strain hardening
regime of interest here is not affected by changes in quench
protocol or extended aging near Tg �over times �104�LJ�.
The simulations presented here are performed at T
=0.2u0 /kB and T=0.275u0 /kB. Both values are well below
the glass transition temperature Tg�u0 /3kB,26 yet suffi-
ciently high to observe significant thermally activated rate-
dependent relaxation.11 Uniaxial compression is performed at

constant strain rate �̇� L̇z /Lz. The volume stays nearly con-
stant during compression. In this case the function describing
the entropy loss in Eq. �1� can be written as g���=1 /�2−�,
where �=Lz /Lz

0 is the stretch relative to the initial size Lz
0.

The strain rates used range from 10−6 /�LJ to 10−4 /�LJ.
Mappings to real polymers23 give �LJ of the order of
10–100 ps, so our lowest strain rate corresponds to

�104–105 s−1. This is within the range probed by experi-
ments �e.g., up to 105 s−1 in Ref. 27�. Previous simulation
studies in this range of �̇ and T have been shown to capture
many aspects of experiments, including logarithmic rate
dependence,26 creep,28 and a linear relationship between flow
and hardening modulus.15 Our lowest rate is also orders of
magnitude slower than those obtainable with more computa-
tionally intensive united atom models �e.g., Ref. 17�. At the
higher rates studied with these potentials, unentangled chains
deform significantly more affinely on the end-to-end scale
because there is insufficient time for activated retraction
along their length. This motion is particularly important for
the chain length dependence of strain hardening considered
here �i.e., Fig. 1�c��.

Systems contain short and long chains with Nshort and
Nlong monomers, respectively. The total number of monomers
is Ntot and the weight fraction of short chains is f . We present
results for Nlong=350, 10�Nshort�25, and kbend=0.75�,
but equivalent results were obtained for a range of other
values. For this kbend, the entanglement length is
Ne�40 monomers.29 In experiments, unentangled glasses
with N	Ne typically exhibit brittle fracture, but fracture is
suppressed in simulations,11,14 perhaps because of the small
system size and periodic boundary conditions.

III. RESULTS

Panels �a� and �b� of Fig. 1 show the stress as a function
of g��� for mixtures with Nshort=25 and 10, respectively.
Results for f =0.5 lie directly between the results for pure
systems with f =0 and 1. Also shown is the weighted average
of the pure system results

�ave = �1 − f��long + f�short �5�

for f =0.5. Within our statistical accuracy, the stress in the
mixtures is equal to this weighted average. We have verified
that this “stress superposition principle” holds for different
kbend, chain lengths, temperatures, and f . When Nshort
10
there is almost no strain hardening of short chains and GR

rises linearly with �1− f� as found in Ref. 11.32 The only
discrepancies from stress superposition are observed at large
g��3.5� when chains in entangled systems have stretched
nearly taut and significant energy is stored in the covalent
bonds. Experiments only reach such large stretches when
special sample preparation procedures are used.2,25

Equation �1� would predict a linear increase in stress
with g. The systems in Fig. 1 were chosen to exhibit devia-
tions from this straight line behavior, but still obey stress
superposition. Deviations from linearity in experiments are
often fit by including non-Gaussian �finite chain length� cor-
rections to the network entropy.2 Previous simulations are
not consistent with this interpretation.12,13 They show that the
upturn in stress for entangled systems reflects energy stored
in the glass, while the downward curvature for unentangled
systems results from subaffine deformation of the chains
�	ln��eff�	
 	ln���	�. Despite the different curvatures for the
long and short chains in Fig. 1, their contributions to the
stress in mixtures are simply additive.
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These results do not conflict with experiments that found
GR was proportional to �e.

5,20,31 For the specific polymers
studied, the entanglement density of mixtures is a weighted
average of pure systems. Thus these systems also obey stress
superposition. It would be interesting to perform similar ex-
periments on polymer mixtures whose entanglement density
was a nonlinear function of weight fraction. The relation
between �e and f is nonlinear for the systems considered here
because they are mixtures of entangled and unentangled
chains. In these systems GR is not linear in �e.

32

To understand why the contribution of chains to stress is
additive, we examined the changes in molecular conforma-

tions during shear. As in Ref. 12, the orientation was quan-
tified by the effective stretch �eff. This is defined as the mean
stretch of chains along the compression direction; �eff

= 
Rz /Rz
0�, where Rz is the rms z-component of the end-to-end

vector of a chain and Rz
0 the value before strain. Panel �c�

shows �eff��� for the same systems shown in panels �a� and
�b�. In mixtures, values of �eff for short and long chains are
obtained from separate averages over chains of the same
length at each value of the macroscopic strain. No time av-
eraging is performed. Remarkably, �eff

long and �eff
short do not

themselves depend on f . In other words, the orientation of
the long �short� chains is not dependent on whether they are
in a pure system or mixed with a fairly high fraction of short
�long� chains. This f-independence of �eff holds over the
same broad range of conditions as the stress superposition
principle.

How can we understand the apparent f-independence of
�eff? The simplest qualitative picture is that interchain inter-
actions in the glass tend to enforce an affine deformation of
the chains, but that this is opposed by intrachain bonds.
Chains cannot deform affinely at small scales because this
would stretch the stiff covalent bonds along the chains. In-
stead, chains are observed to straighten over an effective
persistence length lp that increases with g.11,17 This straight-
ening is independent of chain length until the associated
stress becomes large enough to force relaxation of the chain
along its length. For the systems considered here, the friction
with neighboring chains is large enough that significant re-
laxation does not occur until unentangled chains are
stretched to a substantial fraction of their fully extended
length. Straightening chains while maintaining their connec-
tivity requires local rearrangements of the surrounding
monomers. The number of rearrangements grows with the
persistence length and this was found to correlate directly
with the strain hardening at low temperatures.12,13

Note that entanglements do not enter directly in this pic-
ture. Since entangled and unentangled chains behave in the
same manner at small 	g	, the constraints on their rearrange-
ments must be determined by very local interactions with the
surrounding matrix. Entanglements only become relevant
when g is so large that lp reaches a significant fraction of the
separation between entanglements.12,13,17 In this limit en-
tanglements become more effective than friction from the
matrix in enforcing an affine displacement of the chain. The
associated tension in the chains grows as lp approaches Nel0

and contributes significant energetic terms to the strain hard-
ening at large 	g	.13,14,25,33

It is worth considering under which conditions this mean
field picture should break down. For the reasons described
above, the range of validity in very densely entangled sys-
tems will be limited to small strains. Fortunately, few syn-
thetic polymers are so densely entangled that superposition
would break down in the experimentally accessible34 range
of strains. The mean field picture should also break down for
extremely short chains where the high density of chain ends
changes the density, friction, and other properties signifi-
cantly. Stress superposition will be particularly sensitive to
changes in the relaxation rate of chains on the end-end scale
�relax

−1 with f . These are known to be significant for T above

FIG. 1. ��a� and �b�� Stress plotted against g��� for uniaxial compression of
monodisperse glasses with length Nlong �dashed-dotted� or Nshort �dotted� and
of 50/50 mixtures of the two lengths �dashed�. The solid curves show the
average of the two monodisperse systems. Here kbend=0.75u0 �Ne=39�. �a�
Nshort=25, T=0.275u0 /kB, and 	�̇	=10−5 /�LJ �Ref. 30�. The inset shows a
blowup of the data at large g. �b� Nshort=10, T=0.2u0 /kB, and 	�̇	=10−4 /�LJ.
�c� Variation in �eff with � for pure systems with N=350 �solid circles�, N
=25 �solid squares�, and N=10 �solid triangles�. Open symbols of the same
shape show results for chains of each length in f =0.5 mixtures.
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Tg, where �relax for short chains is increased when they are
mixed with longer chains, leading to greater orientation at a
given shear rate.35,36 Our results show that such coupled-
orientation effects are small deep in the glassy state.

IV. DISCUSSION AND CONCLUSIONS

The simulations presented here provide further evidence
that strain hardening in polymer glasses depends primarily
on chain orientation rather than entanglement. They also pro-
vide new insight into the factors that control the degree of
orientation. The local coupling to the glassy matrix enforces
an affine deformation of the chains ��=�eff� at small 	g	.
Hardening arises primarily from the plastic rearrangements
needed to maintain intrachain connectivity as chains orient
and are straightened over greater lengths. As the associated
stress on the chains grows, there is an increasing tendency
for them to relax along their length, leading to subaffine
deformation ����eff�. The observation that the value of �eff

for a given chain length is independent of f and that the
stress due to plastic rearrangements obeys the superposition
principle implies that chains relax nearly independently. The
degree of relaxation depends on a competition between the
intrachain tension caused by alignment and friction with the
glassy matrix. Entanglements only enter at very large 	g	
where they prevent relaxation of chains that are much longer
than Ne.

To our knowledge, no microscopic theory that predicts
the functional form of �eff in glasses has been published.
Constitutive models which employ a viscoelastic or visco-
plastic description of glassy strain hardening �e.g., Refs. 37

and 38� typically decompose �̄ into rubber elastic and plastic
parts �or use other internal state variables�, but do not explic-
itly account for ���eff or the N-dependence of nonaffine
relaxation.39 It would be interesting to see if a first principles
theory like that of Ref. 18 could be generalized to predict
�eff���. The qualitative ingredients that must enter such a
microscopic theory are evident from the results shown here
and in Refs. 12, 13, and 17. Simply put, �eff falls behind �
when the stress in the material is insufficient to further af-
finely orient the average chain.

Fortuitously, �eff can now be accurately measured in
scanning near-field optical microscopy experiments,41 which
can discriminate values for different chain lengths in a bid-
isperse system. Reference 41 showed �eff falls behind � for
entangled chains deformed slightly above Tg; similar studies
on a variety of chain lengths below Tg would be of great
interest. These might prove that �eff is one of the “mesos-
cale” quantities42 whose understanding will improve model-
ing of the deformation of amorphous materials. Other recent
experiments43 have shown that segmental dynamics and
larger-scale polymer dynamics are nontrivially coupled be-
low Tg. Further developments along these lines would be
welcome, as would extension of the recently improved un-
derstanding of the relation44 between linear viscoelastic be-
havior and structural relaxation to the nonlinear regime.
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