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Abstract Although much is known about the metastable liquid branch of hard spheres—from low dimension
d up to d → ∞—its crystal counterpart remains largely unexplored for d > 3. In particular, it is unclear
whether the crystal phase is thermodynamically stable in high dimensions and thus whether a mean-field
theory of crystals can ever be exact. In order to determine the stability range of hard sphere crystals, their
equation of state is here estimated from numerical simulations, and fluid-crystal coexistence conditions
are determined using a generalized Frenkel–Ladd scheme to compute absolute crystal free energies. The
results show that the crystal phase is stable at least up to d = 10, and the dimensional trends suggest that
crystal stability likely persists well beyond that point.

1 Introduction

Although the phase behavior of three-dimensional hard
spheres was initially debated, for now more than half a
century, it has been under solid numerical control [1]. As
density increases, the liquid branch reaches the liquid–
crystal coexistence point, and then splits into a ther-
modynamically stable crystal branch and a metastable
fluid branch. Further densifying the latter gives rise to
glasses and eventually to jammed solids [2]. As dimen-
sion d increases, these processes are now fairly well-
understood [3,4], thanks to the liquid structure then
steadily simplifying [5–8]. In low dimensions, however,
not only does the local structure markedly impact the
metastable liquid properties, it even facilitates crystal
nucleation [9,10]. Because increasing d generally pro-
motes glass formation at the expense of crystallization
[10–12], relatively little is known about what happens
to the stable crystal branch for d > 3. Whether this
branch persists in the limit d → ∞, and whether one
can obtain any insight into this limit by considering
finite-d systems, remain unclear. The present work aims
to shed at least some light on these physical questions.

The primary difficulty of pursuing such a program is
that each dimension is endowed with its own particu-
lar densest packed (and thus thermodynamically pre-
ferred) crystal structure. Previous computational stud-
ies [10,11] have shown that the liquid–crystal coexis-
tence pressure of hard spheres increases with dimension,
thus suggesting that the crystal becomes steadily less
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favorable than the liquid as d increases. This analysis,
however, was pursued only over a fairly small dimen-
sional range, and further did not take into account the
natural dimensional scaling of the properties of dense
liquids. It was furthermore done without proper finite-
size scaling considerations, a concerning issue in higher
d, wherein computational constraints on system sizes
are particularly acute. Questions thus remain as per the
robustness of this proposal. Moreover, low-dimensional
crystals of hard spheres all have relatively similar phys-
ical properties, whereas higher d crystals can exhibit
exotic features, such as nontrivial zero modes [13].

Determining equilibrium conditions for phase coexis-
tence generally implies equating temperature T , pres-
sure P , and chemical potential μ in all phases present.
Temperature being an irrelevant state variable for
hard spheres, situating liquid–crystal (�-s) coexistence
reduces to finding P� = Ps = P coex and μ� = μs =
μcoex. Through numerical simulations, this determina-
tion can be straightforwardly achieved by thermody-
namically integrating the equation of state, given a
reference-free energy for each phase. For hard spheres,
the virial expansion provides the liquid equation of state
with high precision over a broad d range [14–17], and
the ideal gas offers a convenient reference state. The
core computational difficulty is for the crystal phase.
Its equation of state has been only phenomenologically
described (via numerical simulations in low d), and the
reference crystal free energy must be obtained from spe-
cialized simulation schemes such as that proposed by
Frenkel and Ladd [18–20].
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In this work, we report the crystal equation of state
and the fluid-crystal coexistence conditions for the
densest sphere packings in d = 3–9, which are obtained
from the Bravais lattices D3 (face-centered cubic), D4,
D5, E6, E7, E8, and Λ9, respectively, as well as for
the densest packing in d = 10, which is obtained from
the (non-Bravais lattice) Best packing, P10c [13,21–
23]. Added care is given to the consideration of Λ9,
which is a laminated lattice composed of two inter-
penetrating D9 sub-lattices with nontrivial zero modes
associated with internal translational degrees of free-
dom. This case is particularly informative about higher-
dimensional crystals, because such modes are present in
many of the other Λ lattices and P binary codes (but
not P10c), which describe most of densest known sphere
packings in 9 ≤ d ≤ 29. (The exception is the Coxeter–
Todd K12 lattice for d = 12 [24].) Over the accessible
dimensional range, we find that the freezing density ϕf

remains well below the (avoided) dynamical transition
at ϕd and that the melting density ϕm roughly tracks
but also remains below ϕd. We additionally obtain an
upper bound on the low-density crystal stability, ϕmin

s ,
in each dimension, and find that ϕmin

s > ϕf .

The plan for the rest of this article is as follows. Sec-
tion 2 defines each of the lattices considered and their
embedding in simulation boxes under periodic bound-
ary conditions. Section 3 describes how the liquid and
crystal equations of state are obtained. Section 4 details
the calculation of reference state free energies, which
leads to phase coexistence results being obtained and
described in Sect. 5. Section 6 briefly summarizes the
results and describes possible future research directions.

2 Generating and embedding High-d
crystals

Densest sphere packings in d = 3 − 9 are either related
to D-family (checkerboard) lattices or to the E8 lattice,
while the densest sphere packing in d = 10 is a non-
Bravais-lattice packing derived from a binary code [13].
More specifically, we have:

• the d-dimensional Dd (or checkerboard) lattices con-
tain all points {x1, x2, . . . , xd} such that xi ∈ Z and∑

xi is an even number;
• the E8 lattice contains two D8 lattices offset by

the eight-dimensional vector (12 , . . . , 1
2 ), such that

E8 = D8 ∪ (D8 + (12 )8);
• the E7 lattice is a seven-dimensional subset of

E8 consisting of points {x1, x2, . . . , x8} ∈ E8 with∑
xi = 0;

• the E6 lattice is a six-dimensional subset of E8 con-
sisting of points {x1, x2, . . . , x8} ∈ E8 with

∑
xi = 0

and x1 + x8 = 0. Note that the choice of indices 1
and 8 is arbitrary, but must be kept consistent;

• the D0+
9 lattice, which is a specific instance from

the continuum of Λ9 lattices, is analogous to E8, in
that it consists of two D9 lattices offset by a vector
Ξ = {( 12 )8,Ξ9}, where Ξ9 ∈ R;

• the Best packing, P10c, is defined as the set of all
points {x1, x2, . . . , x10} = 2{a1, a2, . . . , a10} + Aj

10

where ai ∈ Z and Aj
10 denotes column j of the 40-

column A10 matrix [21].

A10 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 1 1 1 1 1 1 0 1 0 1 1 0 0 1 0 1 1 0 1 0 0 0 1 0 1 0 1 1 1 1 0 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1 0 0 0 0 1 1 1 0 1 0 1 0 1 0 0 1 0 1 1 1 1 1
0 1 0 0 1 1 1 1 1 1 1 0 0 1 1 0 0 1 0 1 1 1 1 0 0 0 1 0 1 0 0 0 1 1 0 1 0 0 0 0
0 1 0 1 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 0 1 0 1 1 1
0 0 1 0 1 1 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 1 1 1 0 1 1 1 1 1 0 0 1 0 1 1
0 0 0 1 0 1 1 0 0 0 0 1 0 0 1 1 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 1 1 1 1 0 0 1 0 1
0 0 0 0 1 0 1 1 0 0 1 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 1 0
0 0 0 0 0 1 0 1 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 1 1 0 1 1 1 1 1 1 0 0 1
0 0 0 0 0 0 1 0 1 1 0 1 1 0 1 0 0 1 1 0 1 1 0 1 0 1 0 0 0 1 1 0 1 1 1 1 1 1 0 0
0 1 1 1 1 1 1 0 1 0 1 1 0 0 1 0 1 1 0 0 0 0 0 1 0 1 0 1 1 1 1 0 1 0 0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(1)

The points defined by each of the above are used
as sphere center positions to build the crystal. In the
units implied by the distances above, spheres of radius
σ/2 = 1/

√
2 yield systems at the crystal close pack-

ing density, ϕc. Note that without loss of generality, we
here use Ξ9 = 1

2 to build the d = 9 crystal, but the
freedom in selecting Ξ9 translates the existence of an
internal zero mode. Additionally, our choice to vary Ξ9

rather than one of the other components of Ξ is arbi-
trary, and thus the initial choice of the global degree
of freedom is itself ninefold degenerate. For these rea-
sons, D0+

9 requires special consideration in numerical
simulations as further discussed in Sect. 4.3.

Although these crystal definitions may seem straight-
forward, periodic boundary considerations—which are
central to numerical simulations—lead to some geo-
metrical challenges in finding finite-size crystal lattices
commensurate with the chosen simulation box. Because
only configurations that align with the underlying
boundaries are permitted, allowed system sizes, N , are
sparse, which presents a numerical hurdle in extrapo-
lating results to the thermodynamic limit, N → ∞.
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Fig. 1 Schematic depiction of commensurability between
the simulation box the crystal symmetry and for disks on
a D2 lattice. Allowed periodic boxes for Z2 (red) boundary
conditions and D2 (blue) boundary conditions differ. Peri-
odic boxes are shown for n = 1, 2, and 3 in Z2 boundary
conditions and n = 1, 2, 3, 4, and 5 for D2 boundary con-
ditions. Clearly, Zd boundary conditions generically allow
fewer system sizes than Dd boundary conditions. Note that
while this illustration provides the correct intuition for com-
mensurability in higher dimensions, d = 2 is a special case
because D2 boundary conditions are merely a rotated ver-
sion of Z2. No such degeneracy exists in higher d

In this context, embedding crystals inside both stan-
dard cubic and various non-cubic boundary conditions
conveniently shrinks the size gap between commensu-
rate systems. As discussed in Sect. 4.2, finite-size cor-
rections are indeed largely independent of box shape,
provided that shape remains (nearly) isotropic.

To see how each crystal can be generated within dif-
ferent boundary conditions, consider first standard Zd

symmetric (cubic) simulations boxes. These boxes nat-
urally accommodate D3, D4, D5, E8, and D0+

9 , which
are derived from integer lattices that have themselves
Zd symmetry. Embedding E8 and D0+

9 in a Zd box
also relies on embedding a Dd lattice, because these
lattices simply fill deep holes in D8 and D9, respec-
tively [13]. In practice, the box is chosen to lie on a d-
dimensional hypercubic grid with coordinates [−n, n)
for n ∈ N—thus preventing spurious double counting
of a sphere and its periodic image—and each grid point
is populated with a sphere if it obeys the even sum
rule described above. The resulting commensurability
condition is shown in Fig. 1, which corresponds to Dd

lattices of sizes N = 1
2 (2n)d. For E8 and D0+

9 , a sec-
ond lattice is obtained by duplicating and shifting every
particle, thus doubling the particle count to N = (2n)d.

Starting from the cubic embedding of any of the
above lattices, it is possible to devise an embedding
into Dd boundary conditions, and, as a special case, to
embed E8 into E8 boundary conditions. This construc-
tion is here achieved by choosing the Dd (or E8) bound-
aries to also have limits [−n, n) that correspond with
the blue periodic boxes in Fig. 1. Conway’s decoding
algorithms [25,26] can then be used to find the spheres
that lie outside of the boundary and to map their peri-

odic images back into the box. (Duplicate particles
are then straightforwardly removed.) This construction
results in Dd lattices in Dd boundary conditions with
N = nd, and E8 lattices in E8 with N = n8. As with the
Zd boundary conditions, E8 and D0+

9 can be embedded
in Dd boundary conditions by simply embedding D8 or
D9, respectively, and then inserting a shifted copy of
the lattice. This process creates E8 and D0+

9 lattices
with N = 2nd. Note that although, in principle, any
n is allowed for these constructions, adequately simu-
lating systems larger than a few tens of thousands of
particles falls beyond the reach of commonly available
computational resources.

Embedding E6 and E7 in periodic boxes is slightly
less straightforward, but can nevertheless be achieved
via generating matrices. An embedding of E7 crystals in
a Z7 cell follows from the generating matrix (transpose)
given by Ref. [13], using all points

r =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 1
2 0 0

0 1 0 0 1
2

1
2 0

0 0 1 0 1
2

1
2

1
2

0 0 0 1 0 1
2

1
2

0 0 0 0 1
2 0 1

2
0 0 0 0 0 1

2 0
0 0 0 0 0 0 1

2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

·

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1

x2

x3

x4

x5

x6

x7

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2)

with xi ∈ Z lying inside the Z7 cube with integer side
lengths n ≥ 2. This embedding thus produces systems
with N = 8n7.

Although E6 cannot be embedded in Z6 bound-
ary conditions, it can be embedded in nearly cubic
orthorhombic cells using the simple-root generating
matrix (transpose) [13]. A first such embedding con-
sists of all points

r =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 − 1
2−1 1 0 0 0 − 1
2

0 −1 1 0 0 − 1
2

0 0 −1 1 1 − 1
2

0 0 0 −1 1 − 1
2

0 0 0 0 0
√
3
2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

·

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x1

x2

x3

x4

x5

x6

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (3)

with xi ∈ Z lying inside of an orthorhombic cell
with side lengths {1, 1, 1,

√
3
2 , 1, 1}n, where n ≥ 4 and

must be even. This embedding produces systems with
N = n6/2. A second such embedding has side lengths
{3, 3, 3,

√
3,

√
3,

√
3}n or {3, 3, 3, 2

√
3, 2

√
3, 2

√
3} each

containing 24 atoms [10]. Both types are used in this
work.

P10c is based on a binary code and is thus natu-
rally embedded in Z10 boundary conditions [13] via the
hypercubic box with coordinates [0, 2n) for n ∈ N. Each
unit cell contains 40 particles, yielding N = 40n10. In
order to ensure that each particle has a set of unique
neighbors, it is necessary to choose n ≥ 3, which cre-
ates systems too large for us to consider in this present
work. However, because the integer lattice itself can be
embedded in both D10 and D+

10 boundary conditions,
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so too can P10c, from simply populating the integer lat-
tice. The integer lattice Zd can be embedded in the Dd

lattice with coordinates [−n, n) for n ∈ N, creating sys-
tem sizes N = 2nd. Here, it is only necessary to choose
n ≥ 2 for each particle to have a unique set of neighbors.
Similarly, Zd can be embedded in the D+

d (for d even)
or D0+

d (for d odd) lattice with coordinates [−n, n) for
n ∈ N, creating system sizes N = nd. Thus, P10c can
be embedded in D10 with N = 80n10 and in D+

10 with
N = 40n10.

3 Liquid and crystal equations of state

This section describes the computational and analyti-
cal approaches used to determine the fluid and crystal
equations of state.

3.1 Monte Carlo simulations

Equilibrium configurations are sampled using a stan-
dard Metropolis Monte Carlo (MC) scheme, which
defines the unit of time t as one MC cycle. For liq-
uids, we define the structural relaxation time, τα, as
the characteristic decay time of the standard overlap
parameter for the chosen MC dynamics [19], and for
crystals, we define τα as the characteristic time needed
for the mean squared displacement to reach its plateau
[27]. In both cases, systems are deemed equilibrated
for simulations run for t > 10τα, and 10,000 indepen-
dent configurations are generated for each density. For
the D0+

9 crystal the overall equilibration parameters
remain the same but additional MC sampling moves are
used to accelerate the sampling of its zero modes. More
specifically, the Ξd degrees of freedom are sampled by
using MC moves which displace one D9 sub-lattice with
respect to the other. At the point of maximum degen-
eracy, Ξ = {(12 )9}, nine such pairs of lattices can be
created, one for each Ξd chosen as the global degree of
freedom. Thus, for N single particle moves and 1 center
of mass displacement (as motivated in Sect. 4.3), 9 rela-
tive D9 subset moves are used, on average, for each MC
cycle. In order to preserve the symmetry of the govern-
ing Markov chain, each MC move is given equal weight,
and thus we sample each MC move with frequency
1/(N + 10). These moves are essential for efficiently
sampling the D0+

9 crystal, as they yield a speedup of
at least 104 over standard MC (as estimated from the
pressure equilibration, or rather the lack thereof).

3.2 Analytical forms

Pressure P is extracted from the radial distribution
function, g(r). The virial theorem gives the reduced
pressure (also called the compressibility)

p(ρ) =
βP

ρ
= 1 + 2d−1ϕg(σ+) (4)

at packing fraction ϕ = ρσdVd, where V is the box vol-
ume, Vd is the d-dimensional volume of a sphere of unit
diameter, β is the inverse temperature, and ρ = N

V σd is
the number density of spheres of diameter σ. The value
of the pair correlation function at contact, g(σ+), is
obtained by extrapolating a quadratic fit of nearby g(r)
results. Note that the reduced pressure is often denoted
Z, but we here follow the convention of Ref. [4] to avoid
notational collision with the contact number. Following
standard conventions, all distances are reported for a
unit particle diameter, i.e., σ = 1.

For the liquid in d ≤ 9, the equation of state is well-
approximated by the [4, 5] Padé approximant of the
virial series

p =
1 +

∑4
i=1 biρ

i

∑5
i=1 b̄iρi

. (5)

with coefficients bi and b̄i [15,16] obtained from the first
ten virial coefficients computed by Clisby and McCoy
[14]. More terms are needed for d = 10; hence, we use
the [5, 6] Padé approximant, obtained by resumming
higher-order virial coefficients [17]. As shown in Fig. 2,
these forms fall well within the 95% confidence intervals
of the numerical results, at least up to the fluid–crystal
coexistence regime. For d = 3, in order to obtain an
even higher accuracy, we follow the high precision work
of Pieprzyk et al. on ≈ 106 particles [28] and use a sim-
ple polynomial form that is accurate up to ϕ = 0.534.

For the crystal, various equations of state have been
proposed [29–31] with careful numerical studies lending
greatest credence to that of Speedy in d = 3 [30]. Here,
the Speedy form with the high-accuracy coefficients of
Pieperzyk et al. is used for d = 3 [28]. This form, how-
ever, is ill-conditioned in higher dimensions. For our
purpose, given that the reference point (see Sect. 4.2)
is by construction close to the melting density, a simple
second-order polynomial correction to the free volume
scaling suffices,

ps =
1

1 − (
ϕ
ϕc

)1/d
+ a0 + a1

(
ϕ

ϕc

)

+ a2

(
ϕ

ϕc

)2

, (6)

where coefficients a0, a1, and a2 are determined by
fitting the numerical reduced pressure results. For a
given density, the pressure of the liquid is higher than
that of the crystal. When the crystal density is lowered
below its lowest (meta)stable density, the system pres-
sure then rises once a stable liquid manages to nucleate.
The lowest stable crystal density ϕmin

s is here estimated
as the lowest density at which pressure does not rise
over times comparable to τα.

4 Free energy determination

Given the equation of state, free energy differences can
be obtained by thermodynamic integration. In order to
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Fig. 2 Liquid (red) and crystal (blue) equations of state
and coexistence conditions (black) in d = 4–10. Pres-
sures from numerical simulations (points) of the liquid are
obtained for N = 2048, 3888, 3000, 3000, 1000, 9000, and
6000 respectively (where d = 8–10 are embedded in E8,
D9, and D10 respectively) and are in quantitative agree-
ment with the [4,5] Padé approximant (line) in d = 4–9 and
the [5,6] Padé approximant in d = 10 of the virial expan-
sion (Eq. (5)) [14–17]. Pressures from numerical simulations

(points) of the crystal are obtained for 2048, 3888, 5184,
17496, 6561, 39366, and 81920 in d = 4–10, respectively.
Fits to the empirical form given in Eq. (6) (solid blue line)
quantitatively recapitulate the simulation results. Coexis-
tence conditions are such that μ� = μs and P� = Ps, as
described in Sect. 5. Error bars denote 95% confidence inter-
vals. Pressure is reported in units that implicitly set the
particle diameter to unity, i.e., with σ = 1

obtain absolute values, a reference point of known free
energy must be available. The efficient selection of such
a point depends on the nature of the phase considered.
This section describes the various schemes used in this
work.

4.1 Fluid free energy

In the fluid, the (Helmholtz) free energy can be com-
puted using the ideal gas as reference state. The ther-
modynamic integration can then be written as

βF�(ρ)
N

=
βFid(ρ)

N
+

∫ ρ

0

p − 1
ρ′ dρ′ (7)

with the ideal gas free energy given by

βFid

N
= ln(ρΛd) − 1 +

ln(2πN)
2N

. (8)

Without loss of generality, we set the de Broglie wave-
length to unity, Λ = 1 .

4.2 Crystal free energy

In the crystal phase, a similar thermodynamic integra-
tion is possible,

βFs(ρ)
N

=
βFs(ρ0)

N
+

∫ ρ

ρ0

p

ρ′ dρ′, (9)

albeit using a system of known free energy at num-
ber density, ρ0, as reference. (For numerical efficacy,

this density is chosen near an estimate of the melt-
ing density.) The free energy of such reference crystal
is obtained by Frenkel–Ladd integration from a model
crystal which is exactly solvable [18].

Given a reference crystal with energy U0 and using a
coupling parameter λ ∈ [0,∞), we can write the energy
of an alchemical system as

U(λ) = UHS + λU0 (10)

where UHS is the hard sphere potential, which is recov-
ered for λ = 0. The reference free energy can then be
generically written as

βFs(ρ0)
N

= − β

N

∫ λ

0

〈U〉λdλ +
βFcorr(ρ0)

N
, (11)

where the subscript λ denotes a thermal average taken
at constant λ, and a correction term is added as per
Ref. [32]. In the limit λ → ∞, U0 dominates and the
system free energy can be approximated from its con-
tribution alone. In practice, setting a large λmax, allows
the integral to be separated as

∫ λ

0

〈U〉λdλ = F (λ > λmax) +
∫ λmax

0

〈U0〉λdλ, (12)

where λmax can be estimated analytically for simple
reference systems [19, Eq. 10.3.31]. Note that because
λmax � 1, it is numerically convenient to change inte-
gration coordinates as
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∫ λmax

0

〈U0〉λdλ = lim
λmin→0+

∫ ln(λmax)

ln(λmin)

λ〈U0〉λd(ln λ).

(13)

The remaining problem is to find a reference crystal
whose free energy can be explicitly calculated. The
standard solution is to consider an Einstein crystal in
which each particle i at position ri is harmonically teth-
ered to its perfect crystal site, r0,i

U0 =
N∑

i=1

(ri − r0,i)2. (14)

For a non-interacting Einstein crystal the free energy
FEin = F (λ > λmax) is given by

βFEin(ρ0)
N

=
d

2
ln

(
π

λmax

)

+
d

2N
ln

(
Nλmax

π

)

,

(15)

with the correction term [32]

βFcorr(ρ0)
N

= − ln ρ0
N

+
d − 1

2
ln N

N
. (16)

Note that the center of mass contribution (first term) is
here treated separately, because it must be kept fixed in
numerical simulations. The integrand, 〈U〉λ = 〈r2〉λ, is
the mean squared displacement of a system equilibrated
with an energy given by Eq. (14), which indeed does
not permit system-wide translations. In Section 4.3, we
consider an alternative reference crystal given by a peri-
odic potential whose center of mass is not fixed, and is
therefore better suited for the study of Λ9.

Numerical integration of the integrand (using a cubic
spline smoothing function) chooses λmin such that con-
tributions for λ < λmin are negligible, and λmax such
that the remainder λ > λmax approaches the result for a
non-interacting crystal. In practice (see Fig. 3), setting
λmin ≈ 10−4 and λmax ≈ 1400 suffices. As d increases,
the first-order correction used to estimate λmax has a
smaller convergence radius, but above λmax the inte-
grand plateaus, hence that portion of the integral can
be approximated as βFEin/N , as expected. Note also
that the integrand varies smoothly and monotonically,
which validates the choice and implementation of the
integration scheme.

As Polson et al. have argued [32], the reference free
energy scales asymptotically as 1/N . We thus fit the
numerical results to

βF (ϕ0)
N

= βf(ϕ0) − ãf

N
(17)

to extrapolate the thermodynamic limit of the reference
free energy per particle, f(ϕ0) (Fig. 4 and Table 1). In
d = 3–6 and d = 8, the number of points used for the
fit is ≥ 3, hence a statistical error can be reported for

Fig. 3 Evolution of the Einstein crystal integrand 〈U〉
(Eq. (11)) with tethering constant λ in d = 4, 6, 8, and
10. Multiplying the integrand by 2/d accounts for the triv-
ial dimensional scaling. Note that finite-size corrections for
each integrand scale as 1/N , and are thus indistinguishable
on this scale. For the integration, we choose λmin = 10−4,
below which the function is essentially 0, and λmax ≈ 1400
(determined for each crystal using the analytical approach of
Ref. [19, Eq. 10.3.31]), such that deviations from an Einstein
crystal result in a relative error 1 − 〈r2〉λ/〈r2〉Ein,λ � 1/N .
These corrections are thus numerically negligible. Insets
show the mean squared displacement in the Einstein crystal
simulations along with the analytic result for the interacting
(red line) and non-interacting (black dashed line) Einstein
crystal in the large λ limit [19, Eq. 10.3.30]

βf . For d = 7, 9, and 10, only one system size is stud-
ied, hence, a different error estimate must be obtained.
Here, we note that the error on βf is the quadrature
sum of the error of βF/N and ãf/N . Thus, if ãf is the
primary source of error and it is bound from above, then
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Fig. 4 Reference crystal free energies for Zd (squares), Dd

(diamonds) and E8 (circles) embeddings. For d = 6, full and
empty squares denote orthorhombic boxes of the first and
second types of E6 embedding, respectively. Because results
for a given d ≤ 6 are essentially colinear, we conclude that
(sufficiently isotropic) boundary conditions have little effect
on the first-order correction to the intensivity of the free
energy in this size regime. All results are thus used to fit
Eq. (17) (lines), and for the ensuing thermodynamic extrap-
olation. The sole outlier is E8, for which only the smallest
box in each embedding type is computationally accessible
and is thus more prone to preasymptotic corrections. The
larger relative error on the extrapolated thermodynamic free
energy reflects this fact. Error bars for 95% confidence inter-
vals are smaller than the symbols and are thus neglected for
visual clarity. Curves are offset by a multiplicative factor
2d−3 for visual clarity. (inset) Dimensional evolution of ãF

from Eq. (17)

a maximum error estimate on βf can be obtained by
assuming that the error in ãf is itself equal to the maxi-
mum bound. Although the scaling constant ãf increases
with d, it is divided by N in Eq. (17), and the small-
est crystal sizes considered in these high dimensions are
still rather large. The extrapolation error for βf is thus
expected to remain small even in d = 10. To provide a
quantitative estimate, we guess that ãf ≈ 10 in d = 7,
ãf ≈ 100 in d = 9, and ãf ≈ 300 in d = 10.

With Eq. (17) and the crystal equation of state from
Eq. (6), thermodynamic integration in Eq. (7) is then
used to determine the crystal free energy for conditions
near coexistence.

4.3 Periodic potential crystal reference

As noted in Sect. 2, the global internal zero modes
along the various Ξ9 axis of Λ9 crystals require spe-
cial consideration. An Einstein crystal reference is then
inappropriate because particle displacements cannot be
bounded. To surmount this issue, we here draw inspira-
tion from the simulation of the crystal phase of parallel
cubes. In order to account for the rich collection of zero
modes in this model, Groh et al. [33] proposed using a
periodic potential crystal that matches the symmetry
of the crystal phase of interest as reference.

Table 1 Reference crystal excess free energies, βfex = βf−
βfid, extrapolated in the thermodynamic limit from Eq. (17)
with errors denoting 95% confidence intervals in d = 3–6 and
8, and estimated assuming ãf ≤ 10 for d = 7, ãf ≤ 100 for
d = 9, and ãf ≤ 300 for d = 10

d ϕ0 βfex(ϕ0)

3 0.5450 5.9188(3)
4 0.34 6.2869(4)
5 0.21 7.3840(6)
6 0.14 8.7828(8)
7 0.087 9.806(1)
8 0.048 9.818(15)
9 0.0322 11.92(3)
10 0.0229 15.569(4)

For example, for all Dd lattices, we define the external
potential U0,

U0 =
w2

8π2

N∑

i

(

1 −
d∏

α

cos
[2π

w
(ri · x̂α)

]
)

(18)

where ri is the position of particle i, x̂α is the unit
vector in the α direction, and w = 2σ(ϕc/ϕ)1/d is the
lattice spacing.

By contrast to Einstein crystals (Eq. (14)), the crys-
tal center of mass should not be kept fixed but should
instead thoroughly sample the system volume. Dedi-
cated center of mass displacements are thus incorpo-
rated at a frequency of 1/N relative to individual par-
ticle MC moves (Ref. [19, Sect. 3.3]). The finite-size
scaling of the free energy is also duly modified,

βFs(ρ0)
N

= −d

2
ln

(
π

λmax

)

− β

N

∫ λmax

0

〈U0〉λdλ,

(19)

where the first term is the free energy of the reference
periodic potential crystal, obtained by Taylor expand-
ing around the minimum. By construction, it is equal
to the first term in Eq. (15). Note that the second term
in that equation, which accounts for the fixed center of
mass, is not here present because the center of mass is
now unconstrained.

Validating this approach against the Einstein crystal
reference free energies in d = 3–5 reveals that a direct
application of the periodic potential yields a region of
the integrand of Eq. (19) that is particularly challeng-
ing to sample. The crossover from unimpeded to lim-
ited center of mass displacement is indeed associated
with rapidly changing capability to thermally sample
energy barriers. An umbrella sampling scheme [19,34] is
thus used to compensate for this difficulty. Given a non-
negative weighting function θ(rN ), the ensuing Markov
chain distribution
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a

b

Fig. 5 The integrand of Eq. (19) in a d = 3 and b d = 9
using a periodic reference field on a log–log axis. Umbrella
sampling for λ < 1 ensures that the position of the center
of mass samples uniformly the box volume. This enhanced
sampling scheme is particularly important near the lower
shoulder of the curve, at which point the center of mass
gradually untethers from the minima of the external field.
(Inset) Close-up on the large λ regime, showing the non-
monotonicity of the integrand, and validating the choice
λmax = 106 for this system

π(r) =
θ(r) exp[−βU0(r)]∫

θ(r′) exp[−βU0(r′)]ddr′ (20)

results in weighted averages of standard thermody-
namic quantities. Specifically,

〈U0〉λ =
〈U0/θ〉λ,π

〈1/θ〉λ,π
, (21)

where 〈. . . 〉λθ denotes an average taken at constant λ in
the π-weighted ensemble. From Eq. (20), a particularly
convenient choice of the weighting function is one that
provides an equal probability of being in all states by
exactly canceling the Boltzmann weight of the field,

θ(r) = eβU0(r). (22)

This choice results in the position of the center of mass
sampling uniformly the whole box volume. Note that
although this scheme is appropriate (and efficient) for
λ < 1, the weighting function becomes nearly singu-
lar for λ � 1 (see Appendix A). Note also that the
crossover from λ � 1 to λ � 1 creates a slight over-
shoot of the integrand of Eq. (19) (Fig. 5 inset). In
practice, robust numerical results are obtained by com-

bining the standard periodic potential for λ ≥ 1 with
the umbrella sampling scheme for λ < 1.

For the D0+
9 lattice, an additional term is introduced

in Eq. (18) to account for the second sub-lattice,

U0 =
w2

8π2

N∑

i

(

1 −
d∏

α

cos
[2π

w
(ri · x̂α)

]
)

·
(

1 −
d∏

α

cos
[2π

w
([ri − Ξ] · x̂α)

]
)

, (23)

where Ξ = {Ξd} = {( 12 )9} is the chosen offset.

5 Coexistence conditions

Given the thermodynamic reference free energy along
with integrals of the equations of state in Eqs. (5)
and (6), the chemical potential can be obtained as

βμ(ρ) = βf(ρ) + p(ρ). (24)

Coexistence conditions (P coex, μcoex) can then be deter-
mined from the crossing point of parameteric plots of μ�

vs P� and μs vs Ps. Freezing and melting densities can
further be extracted from the liquid and solid equations
of state, respectively.

The coexistence results in Table 2 lie within the range
of previously reported values obtained using a variety of
different techniques (Table 3) for d < 6. However, they
differ significantly from previous results reported by one
of us [10], which did not consider finite-size corrections
and were numerically quite crude. In d ≥ 6, our results
markedly differ from previous reports. Because these
estimates did not directly probe the thermodynamics of
coexistence, but opted for estimates that have limited
first-principle support, a clear physical explanation for
the discrepancy is not immediate. A possible explana-
tion is that these approaches might have (fortuitously)
worked well in 3 ≤ d < 6, for which the lattice family
remains unchanged, but that the change in lattice fam-
ily for d ≥ 6 was less forgiving. Note that other robust
numerical methods for calculating coexistence exist and
could be used to test the claims of this work, includ-
ing phase switch Monte Carlo [36,37], but these are not
considered here.

In order to compare densities and pressures across
dimensions, we consider and correct for their asymp-
totic d → ∞ scaling, using results for the dense liquid
state [3]. We thus consider rescaled reduced pressures
p̂ = p/d, rescaled chemical potentials μ̂ = βμ/d, and
rescaled densities ϕ̂ = 2dϕ/d. In this form, the melting
and freezing densities suggest an interesting physical
picture (Fig. 6a). Even though the lattice close packing
density grows rapidly with d, the freezing point is nearly
constant, ϕ̂f ≈ 1.3. Interestingly, this observation is
consistent with the recent phenomenological observa-
tion that ϕf and the onset of non-Fickian diffusion ϕnf
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Table 2 Liquid–crystal coexistence parameters for various d reported with 95% confidence intervals, along with reference
values for ϕd (d = 3–8 [7], d = 9 [26], and d = 10 [35]) and ϕc [13]. Errors for ϕmin

s are set by the simulation point resolution

d P coex μcoex ϕf ϕm ϕmin
s ϕd ϕc

3 11.578(3) 16.082(4) 0.4919(3) 0.5434(4) 0.5142(16) 0.5770(5) 0.7405
4 10.807(3) 15.133(3) 0.3031(3) 0.3653(3) 0.324(16) 0.4036(2) 06169
5 14.363(3) 17.604(3) 0.1942(1) 0.2484(3) 0.206(6) 0.2683(1) 0.4653
6 16.400(4) 17.697(3) 0.1129(1) 0.1567(2) 0.125(5) 0.1723(1) 0.3729
7 20.43(1) 18.26(1) 0.0648(1) 0.0963(2) 0.080(2) 0.1076(1) 0.2953
8 24.23(9) 17.82(4) 0.0350(5) 0.0558(2) 0.0392(11) 0.06585(5) 0.2537
9 38.4(1) 20.2(1) 0.0206(8) 0.0329(6) 0.0225(12) 0.0391(6) 0.1458
10 71.9(1) 24.6(1) 0.0126(3) 0.0216(3) 0.0137(5) 0.0226(1) 0.0996

Table 3 Previously reported coexistence conditions in order of publication for each dimension. Estrada et al. [45] obtained
an estimate using polynomial fitting (PF) and another using universal relations (UR), denoted accordingly. Values reported
without error bars are from publications in which none were provided. Results from the current work are given in bold

d P coex μcoex ϕf ϕm Ref.

3 11.70(18) – 0.494(2) 0.545(2) [46]
– – 0.487 – [47]
11.564 17.071 0.494 0.545 [19]
11.55(11) – 0.491(1) 0.543(1) [48]
11.49(9) – 0.489(2) 0.540(2) [36]
– – 0.494 – [40,49,50]
11.54(4) – – – [51]
11.202 – 0.488(5) 0.537 [45] PF
11.668 – 0.492 0.542 [45] UR
11.5712(10) 16.0758(20) 0.49176(5) 0.54329(5) [28]
11.578(3) 16.082(4) 0.4919(3) 0.5434(4)

4 – – 0.308 – [40,47]
– – 0.32(1) 0.39(1) [11]
9.15 13.7 0.288 0.337 [10]
11.008 – 0.304(1) 0.368 [45] PF
11.469 – 0.308 0.374 [45] UR
10.807(3) 15.133(3) 0.3031(3) 0.3653(3)

5 – – 0.194 – [47]
– – 0.169 – [40]
– – 0.20(1) 0.25(1) [11]
10.2 14.6 0.174 0.206 [10]
13.433 – 0.190(1) 0.242 [45] PF
13.184 – 0.189 0.240 [45] UR
14.363(3) 17.604(3) 0.1942(1) 0.2484(3)

6 – – 0.084 – [40]
13.3 16.0 0.105 0.138 [10]
16.668 – 0.114(2) 0.146 [45] PF
17.0318 – 0.114 0.147 [45] UR
16.400(4) 17.697(3) 0.1129(1) 0.1567(2)

7 – – 0.039 – [40]
22.597 – 0.0702(2) 0.086 [45] PF
22.1569 – 0.0696 0.085 [45] UR
20.43(1) 18.26(1) 0.0648(1) 0.0963(2)

8 – – 0.017 – [40]
– – 0.0427 – [45] UR
24.23(9) 17.82(4) 0.0350(5) 0.0558(2)

9 38.4(1) 20.2(1) 0.0206(8) 0.0329(6)
10 71.9(1) 24.6(1) 0.0126(3) 0.0216(3)
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Fig. 6 Asymptotically scaled freezing ϕ̂f and melting ϕ̂m.
While ϕ̂f appears to tend to a constant equal to the onset
of non-Fickian diffusion ϕ̂nf , ϕ̂m steadily increases with d,
seemingly tracking the (avoided) dynamical glass transition
ϕ̂d (from Refs. [26,35]). Data for d = 2 are obtained by
combining the liquid-hexatic coexistence density reported in
Ref. [38] with the liquid equation of state given by the [4, 5]
Padé approximant of the virial expansion from Ref. [14].
(Inset) Dimensional evolution of the similarly scaled coex-
istence pressure p̂ = βP/(ρ�d) and chemical potential μ̂.
Dashed lines are guides to the eye

(nearly) coincide in d = 3 [39]. It also stands in stark
contrast with the predictions of MFCT [40],

ϕ̂MFCT
f =

ϕ̂c(1 + 2d)
2 + ϕ̂c

2d2

Vd

d→∞−−−→ Vd

d
→ 0. (25)

While the freezing point thus lies well below the
(avoided) dynamical transition ϕd, the melting point
ϕm approaches, yet remains below, ϕd in all d consid-
ered. Taken together with the coexistence pressure and
chemical potential results, these observations suggest
that hard sphere crystallization–albeit rare–is not sig-
nificantly impeded by the slowdown of the fluid dynam-
ics for d ≤ 10. Using the crude estimate ϕ̂f ≈ 1.3, and
the high-dimensional equation of state p̂ = ϕ̂

2 we can
also extrapolate the d → ∞ fluid-crystal coexistence
conditions as p̂coex ≈ 0.65. Applying thermodynamic
integration in this limit then yields μ̂ = 2p̂, and thus
μ̂coex ≈ 1.3. This prediction, however, deviates from
the extrapolated lines in Fig. 6, implying that, as d
increases, either the scalings of the pressure and of the
chemical potential become nonlinear or ϕ̂f decreases.
Without guidance from a proper theory of mean-field
crystallization to account for the evolving crystal sym-

metry with d, further speculation remains rather ten-
tative.

This scaling form nevertheless suggests a rough
description of the relative stability of crystals across the
dimensions considered. For d ≤ 9, odd-d crystals have
coexistence pressures and chemical potentials which lie
above the trend line, while those of their even-d coun-
terparts lie below it. The latter are therefore relatively
more thermodynamically stable than the former, with
μ̂coex for E8 lying notably below the overall trend.This
feature likely reflects E8 being in a sense the densest
sphere lattice for d > 1, given its near saturation of the
Rogers bound [41] and its actual saturation of the more
strict Cohn–Elkies bound [42–44].

The coexistence pressure and chemical potential of
the non-Bravais-lattice packing P10c fall far above the
trend line of the lattices, and perhaps give a more
generic case of what should be expected in higher
dimensions, where the difference between the Cohn-
Elkies bound and the densest known packing increases
markedly. However, testing this hypothesis through the
simulation of the next several densest crystals (P11a,
K12, and P13a in d = 11–13 [13]) would require consid-
erably larger computational resources and is thus left
for future work.

Another form of crystal (meta)stability is the resis-
tance to melting below the coexistence pressure. In
order for a homogeneous crystal to melt, a nucleation
site must typically form. The free energy barrier that
controls this activated process is, however, expected to
vanish at a spinodal-like point, below which the crys-
tal is truly unstable. Our simulations provide an upper
bound for this last quantity, ϕmin

s (Table 2). We note
that although the gap between the freezing density and
ϕmin

s shrinks with dimension, the two quantities are dis-
tinct, and ϕf < ϕmin

s even in d = 10. These observations
nevertheless suggest that the coexistence estimate used
in Ref. [11], which relies on this instability in d = 4–
6, would likely fall far off the mark were it applied to
higher d crystals.

6 Conclusion

From this analysis, it is clear that the crystal phase is
thermodynamically stable at high pressures in dimen-
sions d = 3–10. It also appears that p̂coex and μ̂coex tend
smoothly toward finite values in the limit d → ∞. Given
our scheme for the Λ9 lattice and relatively weak dimen-
sional dependence of ãf , generalizing our study to the
non-root lattices that dominate in d > 8 [13] should be
conceivable. The minimal system sizes needed for these
studies, however, are too computationally prohibitive
for the moment.

With coexistence conditions firmly established in
d = 3–10, questions about the dimensional evolution of
nucleation and melting nevertheless persist. Because ϕ̂f

appears to be dimensionally invariant, it remains to
be shown what factor actually controls the height of
the crystallization barrier in high-dimensional systems.
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Computing the solid–liquid interfacial free energy [52–
54] would further enlighten this trend. This effort is also
left for future work.

Finally, our methodological improvements for the
periodic potential crystal reference should also find
applications in a variety of more common two- and
three-dimensional systems. For instance, it could be
used to revisit the phase behavior of parallel cubes as
well as for exploring that of a number of crystals of
polyhedra [55] and superballs [56] that exhibit compa-
rable zero modes.
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Appendix A: Free energy of a single
particle in the periodic reference crystal
field

A minimal model of the periodic potential crystal reference
calculation is a single particle evolving in the field given
by Eq. (18) (see Fig. 5). Because the problem can then be
solved analytically, it provides a robust benchmark for our
numerical implementation and its optimization.

The integrand of Eq. (19) can then be written explicitly
as

〈U(r, λ′)〉λ′ =

∫

U(r, λ′) exp[−βU(r, λ′)]ddr
∫

exp[−βU(r, λ′)]ddr
, (A1)

and thus the system free energy is βF = −β
∫ λ

0
〈U(r, λ′)〉λ′ .

Although the integrand lacks a closed form expression for
d > 1, it can be evaluated numerically with very high accu-
racy for any λ and d. The results for d = 3 serve as an ana-
lytical reference in Fig. 7. Equivalently, the free energy can
be computed directly from the standard statistical mechan-
ics expression, βF = − ln Z, for the partition function Z,
and hence

βF = − ln

∫

exp[−βU(r, λ)]ddr. (A2)

Fig. 7 Integrand of Eq. (19) for a single particle in the
periodic d = 3 reference crystal from direct integration
(black line), direct simulation of the periodic potential (red
points), and simulation of the umbrella potential of Eq. (21)
(blue points). The different results are indistinguishable
below λ ≈ 10, but for λ � 10 results from the umbrella
potential deviate from the correct solution due to poor sam-
pling of the bottom of the potential well, wherein the par-
ticle is then largely confined

This expression also does not have a closed form, but can
be calculated numerically with high accuracy.

These quantities can be used to benchmark the standard
Monte Carlo sampling of the periodic potential as well as
by the umbrella sampling scheme described in Sect. 4.3. For
λ 	 1 standard Monte Carlo sampling leaves the particle
trapped at the bottom of one of the wells, but as λ decreases
the particle regularly explores barriers and crosses over into
neighboring wells. Given sufficient sampling, the intermedi-
ate λ regime is recovered (see Fig. 7), and thus the various
features of the direct integration are recapitulated.

This outcome contrasts with Monte Carlo simulations
that use the umbrella sampling approach of Eq. (22). In
this case, the particle samples all points in the box with
equal probability, even though the actual contribution to
the partition function of each point is proportional to its
Boltzmann weight, exp[−λβU ]. In the single particle case,
both simple Monte Carlo and umbrella sampling work well
for λ � 10. However, for N > 1 and λ ∼ 1/N standard
Monte Carlo sampling fails because it then becomes rare
for simulations to produce particles which are near the top
of energy barriers, whose contributions remain important
for accurately calculating the free energy.

For λ 	 1, the Boltzmann weight exp[−λβU ] concen-
trates, and the only significant contributions to Z come from
a small collection of (degenerate) points in phase space, i.e.,
the bottom of each well. Both the numerator and the denom-
inator of Eq. (21) diverge in this limit, making the evalu-
ation numerically unstable. Physically, this instability cor-
responds to 〈U〉 being vastly undersampled compared with
other λ regimes, thus leading to marked deviation from the
exact result (Fig. 7).

This analysis motivates the high λ cutoff used in the
umbrella sampling for N > 1. Because the Boltzmann
weight exp[−λβ

∑

i Ui] acts on the total energy, the same
cutoff of λ = 1 can be used. However, as N grows, it is
important to sum these contributions carefully, because θ
then also grows.
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