A new geological slip rate estimate for the Calico Fault, eastern California: implications for geodetic versus geologic rate estimates in the Eastern California Shear Zone

Surui Xie, Elisabeth Gallant, Paul H. Wetmore, Paula M. Figueiredo, Lewis A. Owen, Craig Rasmussen, Rocco Malservisi & Timothy H. Dixon

To cite this article: Surui Xie, Elisabeth Gallant, Paul H. Wetmore, Paula M. Figueiredo, Lewis A. Owen, Craig Rasmussen, Rocco Malservisi & Timothy H. Dixon (2018): A new geological slip rate estimate for the Calico Fault, eastern California: implications for geodetic versus geologic rate estimates in the Eastern California Shear Zone, International Geology Review

To link to this article: https://doi.org/10.1080/00206814.2018.1531272

Published online: 24 Oct 2018.
A new geological slip rate estimate for the Calico Fault, eastern California: implications for geodetic versus geologic rate estimates in the Eastern California Shear Zone

Surui Xie, Elisabeth Gallant, Paul H. Wetmore, Paula M. Figueiredo, Lewis A. Owen, Craig Rasmussen, Rocco Malservisi and Timothy H. Dixon

School of Geosciences, University of South Florida, Tampa, FL, USA; Department of Geology, University of Cincinnati, Cincinnati, OH, USA; Department of Soil, Water and Environmental Science, University of Arizona, Tucson, AZ, USA

ABSTRACT
Accurate estimation of fault slip rate is fundamental to seismic hazard assessment. Previous work suggested a discrepancy between short-term geodetic and long-term geologic slip rates in the Mojave Desert section of the Eastern California Shear Zone (ECSZ). Understanding the origin of this discrepancy can improve understanding of earthquake hazard and fault evolution. We measured offsets in alluvial fans along the Calico Fault near Newberry Springs, California, and used several techniques to date the offset landforms and determine a slip rate. Our preferred slip rate estimate is 3.2 ± 0.4 mm/yr, representing an average over the last few hundred thousand years, faster than previous estimates. Seismic hazard associated with this fault may therefore be higher than previously assumed. We discuss possible biases in the various slip rate estimates and discuss possible reasons for the rate discrepancy. We suggest that the ECSZ discrepancy is an artefact of limited data, and represents a combination of faster slip on the Calico Fault, off-fault deformation, unmapped fault strands, and uncertainties in the geologic rates that have been underestimated. Assuming our new rate estimate is correct and a fair amount (40%) of off-fault deformation occurs on major ECSZ faults, the summed geologic rate estimate across the Mojave section of the ECSZ is 10.5 ± 3.1 mm/yr, which is equivalent within uncertainties to the geodetic rate estimate.

1. Introduction
The slip rate of an active fault is a fundamental parameter in seismic hazard estimation (Petersen et al. 2015). Knowledge of strain partitioning and slip rate accommodation across a plate boundary zone is also important for understanding how faults evolve and interact with other faults (Dolan et al. 2007; Ye and Liu 2017; Dixon and Xie 2018). Fault slip rate can vary in both space and time, potentially affecting the timing and magnitude of future damaging earthquakes, emphasizing the importance of detailed studies.

The Eastern California Shear Zone (ECSZ) accommodates ~20–25% of Pacific-North America plate motion in central and southern California, northeast of the Big Bend of the San Andreas Fault (Dokka and Travis 1990a, 1990b; Sauber et al. 1994; Dixon et al. 1995, 2000; Miller et al. 2001; Lifton et al. 2013; Figure 1). Most of the remaining plate motion is accommodated to the west, on the San Andreas Fault in central California, or the San Andreas, San Jacinto, and Elsinore faults in southern California (e.g. Bennett et al. 1996; Meade and Hager 2005; Shen et al. 2011). Formation of the ECSZ is kinematically linked to the Big Bend, whose formation in turn is related to the inland jump of the southern part of the plate boundary at ~5–10 Ma (Atwater and Stock 1998; McQuarrie and Wernicke 2005). Several faults within the ECSZ likely formed or accelerated around this time or later (Dokka and Travis 1990a, 1990b).

The region has been an important natural laboratory to study the formation and evolution of faults (Frankel et al. 2008), as well as other tectonic and plate kinematic studies. Dokka and Travis (1990a, 1990b), Savage et al. (1990) and Sauber et al. (1994) recognized the importance of the ECSZ in accommodating a significant fraction of Pacific-North America plate motion. Minster and Jordan (1987) first identified the “San Andreas discrepancy”; the discrepancy represents the difference between overall plate motion and motion carried by the San Andreas Fault. The discrepancy was initially
attributed to significant right-lateral shear on other faults within the Basin and Range province to the east and the California continental margin to the west (Minster and Jordan 1987; Ward 1990). Improvements in geodetic data in the last few decades have clarified slip partitioning across the entire Pacific-North America plate boundary and suggest a general agreement between summed geodetic slip rates across individual deforming zones and overall relative plate motion (e.g. DeMets and Dixon 1999; Sella et al. 2002; Kreemer et al. 2003; DeMets and Merkouriev 2016).

More recently, several researchers (e.g. Gan et al. 2000; Meade and Hager 2005; Oskin et al. 2008; Spinler et al. 2010; Evans et al. 2016) have noted discrepancies between geologically determined and geodetically determined slip rate estimates for individual faults within the ECSZ, or for summed rates across the shear zone, hereafter termed the ECSZ discrepancy. For example, in the Mojave Desert region (Figure 1), the summed geologic slip rate across the region at ~34.8°N has been defined as ≤6.2 ± 1.9 mm/yr (Oskin et al. 2008), while geodetic rate estimates are significantly faster, ~11 to ~18 mm/yr (Evans et al. 2016 and references therein) (Figure 2). A variety of factors could contribute to the ECSZ discrepancy, including:

1. Off-fault deformation, such that fault slip rates sensu stricto are less than the integrated block motion rate across the larger fault zone (e.g. Shelef and Oskin 2010; Dolan and Haravitch 2014; Herbert et al. 2014a).
2. Acceleration of young, immature faults (Gourmelen et al. 2011), such that the geologic rate, which may average over the early stages of a fault zone’s activity, will be less than the current rate measured by geodesy.
3. Temporal changes in fault slip rates beyond simple acceleration, reflecting complex tectonic processes in the ECSZ, including transient strain on individual faults or temporally clustered earthquakes at the scale of the shear zone (Rockwell et al. 2000; Peltzer et al. 2001; Oskin and Iriondo 2004; Meade and...
Geological slip rate estimates suffer from a limited database. Bird (2007) investigated slip rate data for >800 faults in the conterminous western United States and found that only a small portion (~6%) have well-constrained rates (having combined probability density functions for long-term slip rate in which the width of the 95% confidence range is smaller than the median). He argued that ~4 offset features are required to achieve a well-constrained rate, and ≥7 offset features are required to guarantee a high degree of certainty. To our knowledge no fault in the Mojave ECSZ region has been studied sufficiently to meet Bird’s (2007) criteria and generate the necessary ensemble of rate estimates (Oskin et al. 2008 and references therein).

There are two other issues relevant to slip rate characterization: (1) Surface displacement can be heterogeneous along a fault, perhaps representing interactions between neighbouring faults or different levels of off-fault deformation (e.g. Dolan and Haravitch 2014; Fletcher et al. 2014); and (2) precise dating of offset features can be challenging, especially for Pleistocene and younger alluvial fans (a common offset marker), where surface exposure dating techniques typically exhibit a high degree of scatter. Consequently, a given slip-rate estimate may not be robust, emphasizing the importance of additional studies.

Here, we review geodetic and geologic slip rate estimates for the region and report a new geological slip rate estimate for the Calico Fault, a major fault within the Mojave Desert section of the ECSZ. The new rate is significantly faster than previously determined geologic slip rates, and hence bears on the issue (and perhaps the reality) of the ECSZ discrepancy.

2. Previous work

2.1. Prior geodetic studies

Fault slip rate estimates based on geodetic data are model-dependent. Most models assume either a purely elastic rheology or an elastic layer overlying on one or more visco-elastic layers. The latter has been used to study earthquake-cycle effects in several parts of the Pacific-North America boundary zone (Malservisi et al. 2001, 2003; Schmalzle et al. 2005; Fulton et al. 2010; Chuang and Johnson 2011). Dixon et al. (2003), McGill et al. (2015) and Evans et al. (2016) suggested that discrepancies between geodetic and geologic slip rates in the ECSZ and Walker Lane (the northern continuation of the ECSZ) could be caused by prior earthquakes which stimulate visco-elastic deformation in the lower crust and upper mantle that varies over the time scale of an earthquake cycle. Liu et al. (2015) used...
historical triangulation/trilateration observations before the 1992 Landers earthquake and GPS measurements after the Landers earthquake to recover the secular deformation field and differentiate post-seismic transients. They found that the 1992 Landers and 1999 Hector Mine earthquakes adversely affect GPS measurements, with 2–3 mm/yr excess right-lateral shear inferred across the co-seismic ruptures in the post-earthquake GPS solutions. They estimate a cumulative long-term deformation rate of 13.2–14.4 mm/yr across the Mojave section of the ECSZ, similar within uncertainties to the pre-Landers geodetic estimate of 12 mm/yr by Sauber et al. (1994).

Herbert et al. (2014b) used a boundary element method to simulate three-dimensional deformation of the ECSZ. Their modelling approach suggests that a block-like fault network (faults are simplified to be connected) can produce a cumulative strike-slip rate estimate that is 36% greater than a discontinuous fault model. Based on gradients in the derived deformation map and the implied strain energy density, Herbert et al. (2014a) concluded that 40 ± 23% of the total strain across the ECSZ could be attributed to off-fault deformation.

Evans et al. (2016) used a total variation regularization method to investigate the role of fault system geometry in block models, determining a best-fitting geometry from an initial model with numerous faults. This method minimizes the influence of fault geometry assumptions and reduces uncertainties in geodetic slip rate estimates. Moreover, since a dense fault geometry was used in the initial model, which included active faults separated by <10 km, this modelling method should be able to assess the role of distributed deformation. Evans et al. (2016) identified persistent discrepancies between geologically and geodetically estimated slip rates in the ECSZ, with 4–7 mm/yr discrepancies on the Calico Fault. This suggests the importance of additional studies of the Calico Fault.

To the north of the ECSZ in the southern Walker Lane, across the Northern Death Valley-Fish Lake Valley Fault (DV-FLVF) and the White Mountain Fault (WMF), Lifton et al. (2013) compared GPS-based crustal velocities and geologic slip rates, and found that most of the observed discrepancy between long- and short-term slip rates occurs across Owens Valley. They concluded that the observed geodetic versus geologic discrepancy across the southern Walker Lane is likely a combination of under-estimated geologic slip rates on the WMF and broadly distributed deformation in Owens Valley that is not well preserved in the geologic record.

2.2. Prior geologic studies

From analysis of paleoseismologic trench data and offset landforms along the Calico Fault near Newberry Springs, California, Ganev et al. (2010) found that strain release on the Calico Fault has been highly episodic over the past ~9000 yr, reinforcing the suggestion that earthquakes in the ECSZ are clustered (e.g. Rockwell et al. 2000; Dolan et al. 2007). The geomorphic displacements in the paleoseismologic evidence along the Calico Fault imply that more than one large earthquake (Mw ≥ 7.0) can occur in each clustering time period (Ganev et al. 2010).

Based on a fault initiation time between ~10.6 and 5.5 Ma and a total of 65 km right-lateral displacement at 35° N (from offset Early Miocene markers and a reconstruction model), Dokka and Travis (1990a, 1990b) estimated an integrated long-term slip rate for the ECSZ at 6–12 mm/yr. Assuming that the ECSZ is kinematically linked to the Big Bend in the San Andreas Fault and the inland jump of the plate boundary to the present Gulf of California, age constraints on the timing of the inland jump and the timing of the initiation of marine sedimentation in the northern and southern Gulf of California allow refinement of this estimate. Oskin and Stock (2003) dated marine incursion into the southern Gulf of California at 8.2 Ma, while the northern Gulf is somewhat younger, 6.3–6.5 Ma, perhaps constraining the rate of northward propagation of the developing rift. Bennett et al. (2015) refined the age estimate of marine incursion into the northern Gulf, dating it at 6.2 ± 0.2 Ma. The ECSZ likely formed or accelerated shortly after this time. Initiation ages for the ECSZ between 5.0 and 6.0 Ma allow for the possibility of some finite period for northward propagation. Using the 65 km displacement estimate of Dokka and Travis (1990a, 1990b) and this range of initiation ages the long-term average rate for the ECSZ of 10.8–13.0 mm/yr, essentially identical to most of the geodetic estimates within uncertainties.

Oskin et al. (2007a, 2008) measured surface displacements across several alluvial fans and a lava flow with different ages, determining the slip rates of six dextral faults (Helendale, Lenwood, Camp Rock, Calico, Pisgah, and Ludlow) across the ECSZ, with an overall rate of ≤6.2 ± 1.9 mm/yr at ~34.8°N. The Calico Fault had the fastest slip rate in these studies, 1.8 ± 0.3 mm/yr. This slip rate is based on a 56.4 ± 7.7 ka old surface offset near Sheep Spring Wash in the northern Rodman Mountains. In a study area located ~8 km southeast of that of Oskin et al. (2007a), Selander (2015) estimated a 1.4 ±0.8/−0.4 mm/yr slip rate for the Calico Fault based on
a 17.1 $^{+1.6/-2.6}$ ka old surface offset southwest of the Rodman Mountains. Farther north, Oskin and Iriondo (2004) estimated a slip rate of 0.5 mm/yr for the Blackwater Fault, north of the Calico-Blackwater Fault system. Selander (2015) interpreted such rate fluctuations as evidence for strain transfer from the Calico Fault onto other several nearby faults, with overall dextral slip of the ECSZ apparently decreasing to the northwest, to $\leq 2.6 \pm 1.9$ mm/yr north of 35°N.

A highly disconnected fault network in the ECSZ could imply significant off-fault deformation (Herbert et al. 2014a, 2014b; Selander 2015), or some amount of slip on fault strands that have not been studied. Using the deflection of continuous planar markers and the rotation of paleomagnetic sites, Shelef and Oskin (2010) found that distributed deformation over zones of 1–2 km width accommodates 0 to \sim25% of the total displacement, with most displacement occurring within 100–200 m of faults, decreasing nonlinearly away from the fault.

2.3. The role of fault maturity

Wesnousky (1988) found that the structural complexity of strike-slip faults decreased with increasing offset. Several studies of ECSZ faults (e.g., Stirling et al. 1996; Rockwell et al. 2000; Dolan and Haravitch 2014; Selander 2015) emphasize their structural complexity, a key marker of immaturity, and one that could affect the measurement and interpretation of geologically defined slip rates.

Wesnousky (2005) compared the San Andreas and ECSZ faults systems, noting the latter’s smaller cumulative offset and defining it as an immature fault system. Dolan and Haravitch (2014) analysed a global set of large strike-slip earthquakes and found that faults with total offsets ≤ 25 km manifest only \sim50–60% of earthquake slip as surface faulting, while faults with total offsets ≥ 85 km display \sim85–95% of their slip on surface faults. Based on the inefficiency of generating surface faulting, the authors define strike-slip faults with ≤ 25 km total offset as immature faults. By this definition, all active faults in the Mojave section of the ECSZ are immature (Dokka 1983; Dokka and Travis 1990a; Dixon and Xie 2018). For example, using well-defined markers from an early Miocene structural belt, Dokka (1983) estimated total offsets on individual active faults across the central Mojave Desert from 1.5 to 14.4 km. On the eastern margin of the ECSZ, the Bristol-Granite Mountain Fault has a total offset of 24 km (Lease et al. 2009), but it is currently inactive. The Calico Fault has a total offset of 9.8 km (Glazner et al. 2000; Oskin et al. 2007a).

While individual faults tend to lengthen, narrow, and simplify with cumulative offset (Wesnousky 1988; Dolan and Haravitch 2014), plate boundary zones as a whole can grow in width and complexity (e.g. by adding new faults) depending on overall plate motion and other kinematic boundary conditions. Oldow et al. (2008) describe evolution of the southern Walker Lane, generally considered the northern extension of the ECSZ, and note that parts of it have widened since the Pliocene.

3. New displacement observations

Our study area is located near Newberry Springs, California (Figure 1). Two alluvial fan surfaces here are offset by the Calico Fault (Figure 3). We refer to them as the Autumn Leaf Road (ALR) and Troy Road (TR) alluvial fans based on nearby roads. We estimated their strike-slip displacements based on three data sets: (1) our own field observations including mapped fault scarps; (2) high-resolution aerial ortho-imagery with 0.3 m horizontal resolution, downloaded from USGS EarthExplorer: https://earthexplorer.usgs.gov/; and (3) a digital elevation model (DEM) derived from airborne LiDAR data with 0.5 m horizontal resolution and centimetre-level vertical precision, downloaded from [OpenTopography Facility](http://www.opentopography.org/). Aerial ortho-imagery and LiDAR are especially useful in this semi-arid environment.

3.1. ALR alluvial fan

The ALR alluvial fan is the oldest observed alluvial fan surface in the Newberry Springs area and consists of a series of isolated alluvial surfaces elevated 2–6 m above younger surfaces (Figures 3–5). The surface of this alluvial fan is defined by a well-developed desert pavement, dominated by dark varnished pebbles and abundant, widely spaced metre-scale, sub-angular boulders with compositions that include quartzite, basalt, granite and rhyolite (Supplementary Figure S1). Fault traces identified by field mapping and aerial photography show a well-defined linear trace striking \sim323°. The Calico Fault displaces the alluvial fan in a right-lateral sense, with the main body (better preserved) on the northeast wall and three smaller bodies (remnants, partially eroded) on the southwest wall, \sim1 km to the northwest of the main body. The alluvial fan surface is characterized by shallow (0–2 m deep) channels that are partially filled by deposit and boulders, with one prominent (1–2 m deep) drainage on both the main body and the northwestern-most of the three smaller bodies (marked by red dots in Figure 4(b)). Excavation of two 2-m-deep, 1-m-wide, and 2-m-long trenches (CalicoA and Calico-Pit3,
locations shown in Figure 3(b)) into the side of the ALR alluvial fan reveals that the deposit is dominated by cobbles and occasional boulders, with well-developed calcium carbonate coatings at depths > 0.2 m. The coatings are <4 mm (typically 0.5–2 mm) in thickness (Supplementary Figure S2), with some weak conjoining of adjacent clasts.

We reconstructed the pre-displacement ALR alluvial fan along the fault trace based on surface features and the LiDAR DEM, obtaining 1110 ± 110 m (2σ uncertainty is used in this paper) of right-lateral displacement (Figures 4 and 5). This places the largest of the three smaller alluvial fan bodies immediately adjacent to the southwestern margin of the main body. This also aligns the wide paleo-channel (between the cyan and yellow dots in Figure 4(b)) on both sides of the fault, and the prominent drainage on the alluvial fan surfaces (marked by red dots in Figure 4(b)). We note that this reconstruction aligns a paleo-creek strongly incised in the remnants of the alluvial fan in the northwest to the prominent drainage present on the southeastern alluvial fan body. This southeastern drainage starts deeply incised into the alluvial fan body but drains to the northeast. There is no topographic or geomorphic reason for this, while the paleo-creek on the northwest alluvial fan body does not seem to have a continuation across the fault trace (Figures 3 and 4). Thus, we interpret the prominent drainage as a pre-existing drainage that was once related to the dominant drainage on the northwester fan body. The width of the channel to the southeast of the major body (110 m) is used to define the uncertainty for this displacement, following the method of Frankel et al. (2011). We used several methods and tools to analyse the geomorphology in detail and interpret the displaced features, including the software package LaDiCaoz (v2.1) (Zielke et al. 2015; Haddon et al. 2016) (Figure 6). By shifting an elevation profile 25 m southwest from the fault (red line between two yellow dots in Figure 6(a)) along the fault trace, an 1111 m horizontal displacement minimizes misfit (Figure 6(d)) to the elevation profile northeast of the fault (solid blue line in Figure 6(a)), with a 27.5 m vertical displacement that is perhaps due to southwest-side down dipping of the fault (Selander 2015). Figure 6(f) shows a restored contour map, where sharp-pointed V’s near the ALR alluvial fan are well-aligned between the two sides of the fault. Figure 6(g,h) shows two elevation profiles (corresponding to red and blue dotted yellow lines in Figure 6(a)) along the dominant drainage before and after restoration; Figure 6(i,j) shows two elevation profiles (corresponding to dashed red and blue lines in Figure 6(a)) on the fan surfaces before and after restoration. These show that both the dominant drainage and alluvial fan surface on two sides of the fault have a similar slope aspect. Since the software package LaDiCaoz yields a displacement estimate that is virtually identical to the estimate based on reconstructions using aerial ortho-imagery and the LiDAR DEM, we use 1110 ± 110 m as the displacement and corresponding uncertainty for the ALR alluvial fan. While using the selected paleo-channels as piercing points may induce uncertainty to the reconstruction of older alluvial fans due to erosion, we feel this is reflected in our uncertainty estimate.

3.2. TR alluvial fan

The TR alluvial fan is located ~1 km southeast of the main body of the ALR alluvial fan (Figure 3). Here, rock varnish is moderately developed (light brown) on the surface, and desert pavement is not well developed, suggesting an
age that is younger than the ALR alluvial fan, but older than the active channel. A network of partly filled channels and trains of 0.5–1-m-size boulders characterize the alluvial fan surface. Well-preserved bars with imbricated boulders are pervasive across this fan surface. Carbonate coatings and rubification of the undersides of clasts and boulders are indistinct or not developed within this fan on the surface and an evacuated trench (Calico-Pit2, location shown in Figure 3(b)), consistent with a younger age compared to the ALR alluvial fan. The TR alluvial fan is eroded along both its northwestern and southeastern margins, with active channels traversing the alluvial fan from south-southwest to northeast (Figures 7(a) and 8(a)). Surface fault traces show that the Calico Fault transfers slip from south-north to southeast-northwest trend as it passes this alluvial fan and produces some secondary fault traces near the main fault scarp. The main fault strikes ~338° at the northwestern margin of this alluvial fan (Figures 3 and 7; Ganev et al. 2010).

Northwest of the TR alluvial fan there is an alluvial surface that exhibits no notable fault scarp, suggesting an age that is intermediate between the TR alluvial fan and the active channel, which has a well-defined easterly-northeasterly dip, as illustrated in the LiDAR DEM. We term this intermediate alluvial fan surface IAF (Figure 8(e)). The active channel has a narrow reach at the southwest end (black line in Figure 8(e)) and is characterized by a broad, anastomosing stream channel (ASC) reach within ~300 m of the fault on the southwest wall and continuing across the map area on the northeast wall. The ASC has split the active channel into a broad drainage system. Located between the TR alluvial fan and the active channel ASC on the northeast wall is a small (~100 × 300 m) area of this IAF surface that has escaped reworking by the active channel ASC (IAF*, outlined by the yellow dashed in Figure 8(e)). Palaeostream channels across its surface have the same trend as the broader IAF surface. The TR-IAF* boundary likely formed at the same time as or slightly later than the formation of the broader IAF surface, that is, some unknown amount of time after the formation of TR alluvial fan.

The multiple surfaces in close proximity to the TR alluvial fan suggest a complex erosion-deposition history, complicating the interpretation of fault displacement. Assuming the TR-IAF/IAF* boundary had a straight shape at its formation we interpret a displacement between 90 and 200 m, depending on the

Figure 4. Slip restoration for the ALR alluvial fan. (a) Aerial image of the ALR alluvial fan. (b) The pair of red and yellow dots marked key features used to align offset fan bodies, width of the major channel is used as uncertainty. (c) Restored alluvial fan. (d) Hillshade of the restored alluvial fan.
time and degree of incision of the ASC (90 m if the ASC incised exclusively into the IAF, and the current TR-ASC boundary was a maximum extent of the IAF before incision of the ASC; 200 m if the ASC incised exclusively into the TR alluvial fan, and the current southwestern IAF-ASC boundary was the maximum extent of the TR alluvial fan before incision of the ASC (Figures 7i–p) and 8(c–g)). Both of these interpretations assume that erosion has been equal along the TR edge at both sides of the faults. Since erosion might not have been equal, due to differences in incision or changes in the anastomosing drainage patterns, alternative restorations are possible. Local geometric complexities due to fault steps (e.g. fault bending, vertical deformation, multiple fault strands), could also exert control on surface
processes and mask recognition of features. For example, the edge of the TR alluvial fan may originally have had a more curved shape before the deposition of IAF or the incision of ASC. In that case, the displacement could be $<<90$ m. Figures 7 (e–h) and 8(b) show a restoration of 20 m
displacement. We note that the TR alluvial fan edge immediately southwest of the fault is smoothed by erosion, and the TR alluvial fan edge immediately northeast of the fault may have been reworked by a creek that runs close to the fault, or be partially buried by colluvium (Figure 8(a,b)).

Using the LaDiCaoz software, we derive a displacement estimate of 169 m by minimizing misfit between two elevation profiles along two sides of the fault trace (Figure 9). However, stream channels near the TR alluvial fan offset are not significantly deeper than surrounding surfaces, and elevations close to the fault may have been modified by desert flow of vertical motion. Thus, correlating elevation profiles with LaDiCaoz can result in an estimate with high uncertainty for this alluvial fan. The wide range of possible displacement estimates for the TR alluvial fan highlights the challenges in reconstructing the offset of a structurally complex and relatively young landform subjected to rapid reworking by desert flow.
4. New age estimates

Both the numerical dating and offset reconstruction can cause significant uncertainties in geologically derived fault slip rate estimates. Ideally, the offset feature to be dated would have formed over a short interval of time, sometime after fault initiation. Alluvial fans in the southwestern US, mainly represent Pleistocene and younger features, are thought to have formed in discrete intervals associated with climatic cycles/transition (e.g., McDonald et al. 2003; Dorn 2009; Miller et al. 2010; Shepard et al. 2018), and hence can be useful for estimating geological fault slip rates.

We used several independent techniques and cross-correlated the results to estimate the ages of our two alluvial fans. The degree of rubification (Fe oxide coating) or desert varnish (Fe-Mn oxide coating) on surface clasts, the development of desert pavement, and the presence or absence of a well-developed caliche horizon, serve as qualitative age indicators. By these measures, the ALR alluvial fan is clearly older than the TR alluvial fan. Quantitative techniques such as terrestrial cosmogenic nuclides (TCN) and optically stimulated luminescence (OSL) dating were also used in this study. Both qualitative and quantitative techniques are described below.

4.1. Desert pavement development

Alluvial fan surfaces vary in the ratio of aeolian fine sediments and stony pavement (desert pavement) with the percentage of stony pavement increasing with time. Wells et al. (1985) quantified this process for the northeast Mojave by estimating the percentage of stony pavement on a series of basalt flows of known age. Assuming similar processes apply to our area, the technique can be used to estimate a minimum age for a given alluvial fan surface (because of saturation effects the technique may not define an upper bound). Since the desert pavement is weak to moderately developed in the younger surfaces, we only analysed the ALR alluvial fan surface. We estimated the density of stony pavement on the ALR alluvial fan surface based on surface colour and correlation with exposed sand on four randomly selected photographs of the fan surface (Supplementary Figures S3–S6). Results suggest a minimum age of about 259 ka for the ALR alluvial fan (Figure 10(a)).

4.2. Carbonate rind thickness

Carbonate coatings on cobbles and boulders increase in thickness with increasing age. Amoroso (2006) developed a carbonate rind thickness model
for the Mojave Desert, where rind thickness (in mm) is \(0.0889 + 0.0079 \times \) (surface age in ka). In principle, this model could be used to estimate an age for the ALR alluvial fan, which has well-developed coatings on cobbles and boulders (Supplementary Figure S2). However, a range of thicknesses is observed, leading to a rather wide range of age estimates, with a maximum of 482 ka for the ALR alluvial fan (Figure 10(b)). In addition, the model of Amoroso (2006) is only calibrated to ~130 ka, hence the accuracy for the ALR alluvial fan, which is likely much older, is not established.

Figure 9. Displacement restoration using LaDiCaoz (Zielke et al. 2015; Haddon et al. 2016) for the TR alluvial fan. Markers in each subplot correspond to the same parameters described in Figure 6. Note that due to the complexity of the fan surfaces, we do not pick points near the fault to define the offset profiles, instead, we use the linear traces far from the fault to define an offset channel and extend them onto the fault. Displacement restoration from this fan is 169 m. Note that the reconstructed channel in (h) cannot be well fit by a straight line, probably due to uneven subsidence or erosion, or incorrect restoration since desert flow seems to have significantly modified the surface feature.

4.3. Soil chronostratigraphy

Soil profile descriptions were performed in the field following standard techniques (Schoenegerger et al. 2012) (Supplementary Table S1). Profile development indices for observed profiles were calculated based on field observations following the method of Harden (1982). All of the profiles contained a ~10-cm-thick surface horizon with vesicular pores, secondary carbonates, and generally finer soil textures than underlying horizons indicating substantial contribution of fine grained aeolian material to surface horizons (Wells et al. 1985).
The Calico-Pit2 profile in the TR alluvial fan exhibits minimal soil development in terms of pedogenic structure formation, reddening, and clay accumulation, with several lithologic discontinuities observed along with stratified sands and gravels in the subsurface. Subsurface horizons do contain secondary carbonates, mainly in the form of coatings on the bottom of gravels. The lack of pedogenic alteration resulted in a taxonomic classification of Typic Haplocambid (Soil Survey Staff 2014), and a profile development index value < 10 consistent with Holocene and latest Pleistocene (late marine isotope stage 2) aged soils observed in other areas of the Mojave (Harden et al. 1991).

The CalicoA and Calico-Pit3 profiles in the ALR alluvial fan exhibit greater degrees of soil development, with substantial reddening and secondary carbonate accumulation, and a near completely interlocked surface pavement. The soils classify as Typic Haplocalcids (Soil Survey Staff 2014), and profile development indices for these profiles ranged from ~18 to 25, with a greater degree of development in the CalicoA profile. These profile development indices are consistent with soils dated to ~200–250 ka in other Great Basin soil chronosequences (Harden et al. 1991). Field observation of the CalicoA profile suggested it may have been partially affected by erosion based on its soil morphologic features and location on the edge of the fan surface. Excavation of shallow pits in the centre of the ALR alluvial fan bodies indicated a depth of 35–40 cm to reach the top of the Bk2 horizon versus a depth of 28 cm in the sampled and described CalicoA profile, suggesting a potential loss of 7–12 cm of depth due to erosion. Including this additional depth in the calculation of the profile development index pushes the age correlation estimate close to 300 ka.

4.4. OSL dating

OSL dating determines the time elapsed since a sediment sample was last exposed to daylight (Aitken, 1998). The method relies on the interaction of ionizing radiation with electrons in semi-conducting minerals within buried sediment, which results in metastable accumulation of charge. Illumination of the sediment releases the charge as a measurable emission of photons (luminescence). The methods assume that mineral grains during or immediately prior to the transport were exposed to daylight to set them to their geological zero residual level. Upon burial, daylight exposure ceases and essentially the luminescence signal begins to accumulate due to radiation arising from the decay of ambient radioisotopes that include U, Th, Rb, and K, and from cosmic rays. Given that, as a first approximation, the radiation exposure (the dose rate \(D_R \)) is constant over the timescales of interest, luminescence builds up (equivalent dose \(D_E \)) in the minerals in proportion to the duration of burial and the concentration of radioisotopes in the sample environment and the cosmic dose. The depositional age (\(A \)) of the sample is thus a ratio of luminescence acquired and the rate of luminescence acquisition, that is, \(A = D_E/D_R \) (Aitken, 1998; Murray and Olley 2002; Singhvi and Porat 2008).

Since the age of the ALR alluvial fan is likely to be beyond the range of applicability for the OSL technique, we only sampled the TR alluvial body, at the Calico-Pit2 (location shown in Figure 3(b)). Three OSL
samples were collected at 75, 55, and 33 cm of depth (Calico F1, Calico F2, and Calico F3, respectively) by hammering 15-cm-long, 5-cm diameter plastic tubes into the sediment (Supplementary Figure S7). Detailed descriptions of the OSL sample processing steps are given in Supplementary Text S1.

Table 1 presents the radioisotope, water content, and cosmic dose, \(D_\text{B} \), \(D_\text{c} \), and OSL age for the samples. OSL characteristics and age determination are also discussed in more detail in Supplementary Text S1, Figures S8 and S9. The OSL ages range from 5.0 ± 0.4 ka (shallow sample) to 5.8 ± 0.4 ka (deep sample).

4.5. TCN \(^{10}\text{Be} \) surface exposure dating

Cosmic rays generate terrestrial cosmogenic nuclides (TCNs) in Earth’s atmosphere and surface that are produced at a known rate and can be used to date a variety of materials and processes. For alluvial fan surfaces, it is useful to focus on techniques where the nuclides are produced in situ, a technique known as TCN surface exposure dating. Since quartz is a common rock-forming mineral rich in oxygen, a spallation reaction that transforms \(^{16}\text{O} \) to \(^{10}\text{Be} \) (1.4 \(\times 10^6 \) years) is especially useful (Gosse and Phillips 2001). Comparison of surface samples to depth profiles can be helpful in establishing the degree of inheritance of \(^{10}\text{Be} \), which otherwise can lead to anomalously old age estimates (alluvial fans often develop by re-mobilizing older alluvial material, and inheritance is a particular problem for younger fans, where the majority of the \(^{10}\text{Be} \) signal can be inherited). Overland sheet flow, erosion, and bioturbation can also disturb surface boulders, leading to anomalously young ages. Older alluvial fans are more likely to experience such disturbance.

We collected rock samples (>150 g each) from surface boulders and cobbles on the ALR and TR alluvial fan surfaces (red dots in Figure 3(b)). Sediment samples for depth profiles were collected at depth intervals of 30 cm for 3 pits to a depth of 2 m: CalicoA and Calico-Pit3 for the ALR alluvial fan, and Calico-Pit2 for the TR alluvial fan (light blue squares in Figure 3(b)). Supplementary Figure S10 shows pictures of collected samples. Both types of sampling were used for TCN dating using \(^{10}\text{Be} \). Rock samples were chosen following criteria described in Gray et al. (2014), Frankel et al. (2015), and Hedrick et al. (2017), including: (1) large size, typically >50 cm in length; (2) stable boulders inset into the ground; (3) little sign of erosion; and (4) quartz rich lithology. If boulders were absent whole cobbles were collected. The highest positions on alluvial fan surfaces were selected for depth profile trenches to minimize the possibility of surface erosion.

Table 1. Summary of OSL dating results from extracted from sediment, sample locations, radioisotopes concentrations, moisture contents, total dose-rates, \(D_\text{E} \) estimates, and optical ages

<table>
<thead>
<tr>
<th>Sample</th>
<th>Location (W, E)</th>
<th>Altitude (m asl)</th>
<th>Depth (cm)</th>
<th>% Th</th>
<th>Rb</th>
<th>Total dose-rate (D_\text{E}) (Gy ka(^{-1}))</th>
<th>Average equivalent dose (D_\text{E}) (Gy ka(^{-1}))</th>
<th>Average equivalent dose (D_\text{E}) for minimum peak</th>
<th>Age (ka)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calico F1</td>
<td>34.7951/116.6371</td>
<td>596</td>
<td>75</td>
<td>2.3</td>
<td>14.9</td>
<td>3.3</td>
<td>3.3</td>
<td>23.84 ± 1.75</td>
<td>23.84 ± 1.75</td>
</tr>
<tr>
<td>Calico F2</td>
<td>34.7951/116.6371</td>
<td>596</td>
<td>55</td>
<td>2.1</td>
<td>14.1</td>
<td>3.0</td>
<td>3.0</td>
<td>24.15 ± 1.75</td>
<td>24.15 ± 1.75</td>
</tr>
<tr>
<td>Calico F3</td>
<td>34.7951/116.6371</td>
<td>596</td>
<td>33</td>
<td>2.0</td>
<td>14.9</td>
<td>3.1</td>
<td>3.1</td>
<td>24.15 ± 1.75</td>
<td>24.15 ± 1.75</td>
</tr>
</tbody>
</table>

*Elemental concentrations from NAA of whole sediment measured at Activation Laboratories Limited Ancaster, Ontario Canada. Uncertainty taken as ±10%.
*Estimated fractional day water content for whole sediment is taken as 10% and with an uncertainty of ±5%.
*Composites a single-aliquot regenerative-dose method (SAR; Murray and Wintle 2000). These are based on recuperation error of <10%.
*Weighted mean and standard error equivalent dose (\(D_\text{E} \)) for all aliquots. The uncertainty includes an uncertainty from beta source estimated of ±10%.
*Weighted mean and standard error equivalent dose (\(D_\text{E} \)) for minimum peak if \(D_\text{E} \) dispersion was >20%, then a 2 mixing model was considered.
All rock samples were prepared with standard procedures, including crushing, magnetic separation, heavy-liquid mineral separation (only for samples with significant heavy minerals or feldspars), etching, dissolution, purification, and target loading. Sediment samples went through the same processing procedures except for crushing: we sieved sand grain sizes between 0.25 and 0.5 mm before subjecting them to the procedures described above. Sand samples from Calico-Pit2 and Calico-Pit3 profiles did not yield a sufficient quantity of quartz, thus in order to increase the amount, small quartz-rich pebbles were added, with sizes between 0.5 and 12.5 mm; these pebbles were crushed, later sieved, and added to the sand quartz fraction of 0.25–0.5 mm. Detailed descriptions of these samples and the TCN sample processing steps are given in Text S2 of the Supplement. Uncertainties for all ages are estimated at 2σ (95% confidence interval).

4.5.1. ALR alluvial fan
Ten rock samples on the ALR alluvial fan surface yield ages that range from ~75 to 346 ka (Figure 11 and Supplementary Table S2). Eight have ages of ~100 ka, while the other two (erosionally resistant quartz samples) have ages that are >300 ka.

To better constrain results and assess possible inheritance and erosion effects, depth profiles with samples collected at various depths from two trenches were used to help assess the validity of the surface exposure ages: one trench (CalicoA) at the southern corner of the main body of ALR alluvial fan, and a second one (Calico-Pit3) at the small fan surface to the northwest. Ideally, an exponential decrease of TCN concentration with depth is expected if the alluvial fan formed in a simple way, with no disturbance since formation and with all sediments that later became part of the alluvial fan containing the same concentration of inherited TCNs as that of the initial alluvial fan formation. The concentration of 10Be versus depth profile thus contains information on exposure age, erosion history and inheritance. Figure 12(a) shows the 10Be concentration versus depth profile for CalicoA, with the expected trend (decreasing 10Be with depth).

A Bayesian-Monte Carlo simulation allows simultaneous estimation of age, erosion history, and inheritance (Hidy et al. 2010; Hidy 2013). Loose constraints are applied, with age, erosion and inheritance allowed to vary between conservative high and low values, and Monte Carlo techniques are used to derive best estimates of the model parameters. The allowed ranges of the constraints used here are: 0–1200 ka for exposure age, 0–0.5 cm/ka for erosion rate, and 0–1.3×10^5 atoms/g for inheritance. No shielding was applied for the simulation (all samples were located far from high-relief features, and the environment is not currently favourable for snow cover). We assume an attenuation length of $160 \pm 5 \text{ g/cm}^2$.

![Figure 11. TCN 10Be ages (ka; see Table 2 for the age uncertainties) of rock samples collected on alluvial fan surfaces. (a) Red dots show locations of rock samples. Their apparent ages are shown in adjacent white annotations. (b) Age probability density function (PDF) of rock samples on the ALR alluvial fan, derived by using the program of Zechar and Frankel (2009). (c) Age PDF of rock samples on the TR alluvial fan.](image)
and a stochastic uniform density of 1.9–2.5 g/cm³, consistent with previous studies in similar environment (e.g. Hidy et al. 2010; Owen et al. 2011a; and Gray et al. 2014). We then estimate the probability density functions for exposure age, erosion rate, and inheritance (Figure 12(a–e)). The most probable Bayesian age for CalicoA is 222 ka. However, without tight constraints on the other two parameters, the age estimate has a broad distribution, with a 2σ range between 196 and 832 ka (Figure 12(c), note tail on the upper bound is significantly longer). The 2σ upper limit of inheritance is 7.06 × 10⁴ atoms/g, equivalent to an age of ~15 ka.

We applied the same method to the depth profile of Calico-Pit3, with constraint ranges as follows: 0–3000 ka for exposure age, 0–2.6 cm/ka for erosion rate, and 0–4.4 × 10⁵ atoms/g for inheritance (a conservative high will produce unrealistically high end-members of inheritance, thus the maximum ¹⁰Be concentration among the 6 samples was used as high-end constraint). The result gives a wide age distribution, with 2σ range between 99 and 2401 ka. Note that the most probable erosion rates from two depth profiles are smaller than the 3.05 ± 0.62 cm/ka erosion rate estimated at the Calico Archaeological site, ~19 km away from our study area (Owen et al. 2011a). Assuming the same erosion rate as Owen et al. (2011a) yields a poor fit to the depth profiles and unrealistically old exposure ages. Due to the detailed soil profile analysis conducted, we recognize at CalicoA that the upper section of the surface was eroded about 7–12 cm (Section 4.3). Adjusting the depths for samples in the depth profiles by adding a 10 cm depth results in a slightly lower erosion rate that balances the depth adjustment, but the age and inheritance are essentially the same. While imperfect knowledge about erosion over the lifetime of the alluvial fan surface can limit the precision of the age estimates from depth profiles, these age limits allow us to exclude some rock samples from further study. For examples, rock samples with apparent ages of ~100 ka or less are clearly not representative, perhaps due to incomplete exposure (partial burial) or outer surfaces that may have been eroded.

Two erosionally resistant quartz samples yield apparent ages of >300 ka. We use the apparent age of the oldest sample (346 ± 24 ka) as the most reliable estimate of the exposure age for the ALR alluvial fan.
surface. The depth profile results suggest that inheritance would not change this age significantly. This age estimate is consistent with results from the carbonate rind thickness, desert pavement density, and soil chronostatigraphy techniques (Figure 13(a)).

4.5.2. TR alluvial fan
Among 9 dated rock samples collected on the TR alluvial fan surface, one (Calico-6) has an age of 250 ka. This age is incompatible with the observed soil development here (no visually obvious rubification and carbonate coating). Inheritance from older units likely explains this anomalously old age. The remaining eight samples still exhibit a wide range of ages, from 10.9 to 70 ka (Figure 11). The depth profile for this fan, Calico-Pit2 does not show the expected exponential decrease in 10Be concentrations with depth (Figure 12(k)), indicating inheritance saturation. The OSL samples provided ages in the range of 5.0 ± 0.4 to 5.8 ± 0.4 ka for the upper metre of the fan deposit, suggesting a Holocene age for this fan surface and indicating the fan sediments were deposited in a relative short period of time. The young age and relatively fast sedimentation indicated by the OSL results, combined with inheritance saturation of 10Be in depth profile, presumably explains the lack of exponential decrease with depth of the 10Be concentrations.

For TCN dating techniques, understanding and quantifying inheritance is important. This is especially true for younger deposits and surfaces which can cannibalize older fan material and have not had sufficient time to generate a unique age signature. We estimated an inheritance of ~60 ka from our Calico-Pit2 depth profile. However, most of the rock samples from the TR alluvial fan have young apparent ages that are incompatible with inheritance saturation, indicating that inheritance in boulders and sand can vary significantly.

All of our TCN dated boulders are much older than the OSL results. There are two possibilities to explain the TCN results for the TR alluvial fan: (1) The true exposure age of the TR alluvial fan is closest to the young cluster (10.9–17.1 ka) of apparent ages from rock samples with inheritance subtracted. The other rock samples have larger amounts of inheritance, and the depth profile represents an average inheritance for the fan material; (2) The true exposure age is significantly older than the young cluster of apparent ages. In this case, a complex formation-exposure history has occurred, such that the depth profile does not show the expected exponential decrease in 10Be concentrations with depth. The first possibility agrees with the soil development and OSL dating results. The second possibility requires that the youngest four samples have experienced significant erosion or shielding after fan formation, which we think is unlikely given its relatively young age based on lack of rubification and desert pavement development.

We thus favour the first explanation. In this case, inheritance estimated from the depth profile (equal to ~60 ka) does not equal the inheritance of most of the rock samples (<45 ka). Since the scatter of apparent ages is largely determined by inheritance, we therefore discard the older apparent ages. Based on the four boulders with youngest apparent ages we estimate the weighted mean and 2σ, and obtain 14.0 ± 5.8 ka. Note this is still a maximum age estimate for the TR alluvial fan as it contains unknown amount of inheritance. If the OSL dated age of ~5 ka represents the true age, then inheritance accounts for ~9 ka among the youngest cluster of ages. Dating sediments in the Mojave through OSL can be also challenging, OSL

![Figure 13](image_url)

Figure 13. Age constraints for the ALR and TR alluvial fan. (a) 10Be dated age of 345±24 ka is our preferred age estimate for the ALR alluvial fan. Degree of desert pavement packing, carbonate rind thickness and soil chronostatigraphy give additional constraints on the fan age. (b) The youngest OSL dated age is a minimum age for the TR alluvial fan, and the 10Be dated contains an unknown amount of inheritance.
measurements may give ages that are too young, for example, due to low OSL sensitivity, poor quartz characteristics, high dose rates, and low water estimates (e.g. Owen et al. 2007; Lawson et al. 2012), 5 ka may therefore represent as a minimum age for the TR alluvial fan.

These results suggest a young age for the TR alluvial fan, consistent with proposed ages for regional alluvial fan generation by Miller et al. (2010), and consistent with soil chronology at this site (Figure 13).

5. Slip rate estimates

For the ALR alluvial fan, the displacement of 1110 ± 110 m and the TCN exposure age from the sample with the largest apparent age (346 ± 24 ka) yields a slip rate of 3.2 ± 0.4 mm/yr. For the TR alluvial fan, the OSL dating yields a minimum age of 5.0 ± 0.4 ka, and the TCN surface exposure dating gives a maximum estimate of 14.0 ± 5.8 ka. Displacement estimates of the TR alluvial fan are highly uncertain, hence the slip rate is not well constrained by our data (Figure 14). While a displacement estimate of 20 m, and the OSL age of 5 ka define a slip rate similar to the ALR alluvial fan data, the complex offset geometry and spread of geochronology data for this alluvial fan allow alternate interpretations. For example, the displacement estimate of 90 m and TCN exposure age of 14.0 ± 5.8 ka define a faster slip rate, 6.4 ± 2.7 mm/yr; the same displacement but using the OSL dated age results in an even higher slip rate. In the discussion below, we use the slip rate estimate based on data from the ALR alluvial fan as the best estimate for the long-term average (several hundred thousand year) slip rate of the Calico Fault.

6. Discussion

Our new slip rate estimate of 3.2 ± 0.4 mm/yr based on the ALR alluvial fan data is considerably faster than previously published values for the Calico Fault (Table 2). This new slip rate is faster than the estimate of 1.8 ± 0.3 mm/yr from the 56.4 ± 7.7 ka old ‘K’ alluvial fan of Oskin et al. (2007a), more than double the slip rate estimate of 1.4 ± 0.4 mm/yr from the 650 ± 100 ka old ‘B’ alluvial fan by Oskin et al. (2007a), and more than double the 1.4 \(^{+0.8/-0.4}\) mm/yr estimate from a 17.1 \(^{+1.6/-2.6}\) ka ‘Q2c’ unit southwest of the Rodman Mountains reported by Selander (2015). Although our estimate may represent a maximum slip rate due to limited knowledge of the erosion history and corresponding uncertainty in the alluvial fan age (i.e. the alluvial fan could be older), the lower slip rate limit should not be much lower, for three reasons: (1) the probability density function (pdf) of the age–depth profile CalicoA (Figure 12(c)) skews strongly to ~300 ka, with a correspondingly small probability for ages >600 ka; (2) a slip rate of 1.8 mm/yr for the ALR alluvial fan requires that its exposure age would be >600 ka given the 1110 m displacement, incompatible with the carbonate rind thickness and soil development data, which require an age much younger than this; and (3) our displacement and age estimates for the TR alluvial fan, while they have larger uncertainties, also allow a faster rate interpretation (though it does not require it; Figure 14). For example, assuming the smallest possible displacement (20 m) and the OSL results (5.0 ± 0.4 ka) gives a rate of ~4 mm/yr. Any of the larger displacement estimates requires a correspondingly faster rate if the OSL age estimate is correct.

Since the various published rate estimates and our own estimates are based on offsets from different locations along the Calico Fault and features with a range of ages, there are several possible explanations for the differences, including: (1) the slip rate on the Calico Fault changes along strike; (2) the slip rate on the Calico Fault changes with time; (3) one or more of the assumptions used to estimate slip rates are in error; and/or (4) all of the data are correct in a strict sense but the estimates represent on-fault slip rates at the corresponding sites. In this case the fastest one may be...
Table 2. Displacement, age, and slip estimates from Oskin et al. (2007a, 2007b), Selander (2015), and this study.

<table>
<thead>
<tr>
<th>Surface</th>
<th>Sample</th>
<th>Dating technique</th>
<th>Age (ka)</th>
<th>Age uncertainty (ka, 2σ)</th>
<th>Preferred rate * (mm/yr, 2σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALR (this study)</td>
<td>Calico-9</td>
<td>10Be</td>
<td>345.7</td>
<td>24.3</td>
<td>3.2 ± 0.4</td>
</tr>
<tr>
<td>Displacement: 1110±110 m</td>
<td>Calico-11</td>
<td>10Be</td>
<td>313.7</td>
<td>20.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calico-12</td>
<td>10Be</td>
<td>75.3</td>
<td>8.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CA-14</td>
<td>10Be</td>
<td>113.6</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calico-20</td>
<td>10Be</td>
<td>112.1</td>
<td>25.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calico-23</td>
<td>10Be</td>
<td>81.5</td>
<td>23.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calico-25</td>
<td>10Be</td>
<td>107</td>
<td>19.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CA-104</td>
<td>10Be</td>
<td>100.2</td>
<td>7.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CA-106</td>
<td>10Be</td>
<td>82.8</td>
<td>13.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CA-107</td>
<td>10Be</td>
<td>96.5</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calico-3</td>
<td>10Be</td>
<td>41.4</td>
<td>3.3</td>
<td>6.4 ± 2.7</td>
</tr>
<tr>
<td></td>
<td>Calico-7</td>
<td>10Be</td>
<td>42.5</td>
<td>7.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calico-8</td>
<td>10Be</td>
<td>59.6</td>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CA-102</td>
<td>10Be</td>
<td>70.4</td>
<td>9.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calico-1</td>
<td>10Be</td>
<td>17.1</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calico-2</td>
<td>10Be</td>
<td>12.1</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calico-5</td>
<td>10Be</td>
<td>15.9</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calico-6</td>
<td>10Be</td>
<td>249.7</td>
<td>24.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CA-101</td>
<td>10Be</td>
<td>10.9</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calico F1</td>
<td>OSL</td>
<td>5.8</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calico F2</td>
<td>OSL</td>
<td>5.2</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calico F3</td>
<td>OSL</td>
<td>5.0</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>TR (this study)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Displacement: 90 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWRM (Selander 2015)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Displacement: 24±10 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B (Oskin et al. 2007a, 2007b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Displacement: 900 ± 200 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K (Oskin et al. 2007a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Displacement: 100 ± 10 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Slip rate estimate from ALR fan data is based on the reconstructed displacement of 1110±110 m and the age of an erosion resistant quartz sample Calico-9 (346±24 ka). Slip rate estimate from the TR alluvial fan is based on the displacement estimate of 90 m and weighted mean age of 14.0±5.8 ka (using two standard deviations as uncertainty) from TCN dating of four rock samples with apparent ages between 10.7 and 17.1 ka. Using OSL dating ages result in higher rates. Slip rate estimate by Selander (2015) is based on a depth profile Q2c at the southwest Rodman Mountains (SWRM), with a displacement estimate of 244±4 m and an age estimate of 17.1±0.6 ka. Slip rate estimate of B fan by Oskin et al. (2007a, 2007b) is from an assigned age of 650 ± 100 ka based on age data (see details in Oskin et al. (2007a)) and a displacement estimate of 900 ± 200 m. Slip rate estimate of K fan by Oskin et al. (2007a) is from a displacement estimate of 110 ± 10 m and a mean average age of 56.4 ± 7.7 ka (inheritance estimate from active wash samples subtracted) based on 10Be exposure age dating of rock samples.
closest to the true slip rate due to different amounts of slip localization and off-fault deformation.

Regarding a change in slip rate along strike (our first explanation), Oskin et al. (2007a) and Selander (2015) suggest that slip in the Calico-Blackwater Fault system varies spatially, with slip transferring from the Calico Fault to the Harper Lake and Blackwater faults via a set of thrust ramps or absorbed by folding adjacent to the Calico Fault. The two studies referenced above are separated by only ~8 km and have rates that differ by ~30%. Our study area is ~7 km from the study area of Oskin et al. (2007a), and ~15 km from the study area of Selander (2015) (Figure 15). To support an increase from 1.4 or 1.8 to 3.2 mm/yr would require that nearby faults (the fastest one is Camp Rock Fault, with slip rate ≤ 1.4 mm/yr (Oskin et al. 2008)) transfer almost all their slip to the Calico Fault within 15 km. While it seems overly complicated, we cannot preclude this possibility considering the highly discontinuous and complex nature of the Mojave section of the ECSZ. More studies are needed to explore the possibility of slip rate transfer along strike, or communication among nearby faults.

As for a change in slip rate over time (our second explanation), the displacement of the ALR alluvial fan (1110 ± 110 m) is slightly larger than the ‘B’ alluvial fan (900 ± 200 m, with a surface exposure age estimate of 650 ± 100 ka) of Oskin et al. (2007a). To reconcile the displacement and age data, the Calico Fault would need to be inactive between the formation time of the ‘B’ alluvial fan and the formation time of the ALR alluvial fan. Unless the ALR alluvial fan has an exposure age similar as the ‘B’ fan, this seems unlikely, based on the age constraints described earlier.

We now consider the possibility that different rate estimates may be caused by incorrect assumptions used in the slip rate calculations (our third explanation). For example, offset reconstructions use landforms such as alluvial fans, but erosion may blur key features. In the case of the TR alluvial fan, the degree of incision by the ASCs into the TR alluvial fan can change the displacement and slip rate estimate by more than a factor of two. Since displacement is in the numerator for slip rate estimates, uncertainty in the displacement estimate has more of an effect on the rate estimate for younger alluvial fans. However, older alluvial fans may suffer more erosion, making it difficult to estimate accurate displacements for these features. Given the age ranges for the TR alluvial fan offset from OSL and TCN dating (5.0–14.0 ka), and a plausible maximum range of slip rates for the Calico Fault (1.4–12.0 mm/yr; Sauber et al. 1994; Oskin et al. 2007a; Selander 2015; McGill et al. 2015; this study), plausible displacements span a large range, from 7 to 168 m (Figure 14). If correct, this suggests that the ASC surface may not be incised exclusively into the TR alluvial fan.

Age determinations can also cause large uncertainties in slip rate estimates. TCN exposure dating techniques often result in large uncertainties due to a variety of geologic factors (Owen et al. 2011b), requiring data editing that could introduce systematic biases. While such editing is usually based on sound geological criteria, for example, relative ages derived from field observations, these assignments become more difficult for older alluvial fans. Wells et al. (1985) and Oskin et al. (2007a) note that criteria such as surface morphology and clast weathering tend to approach steady state with increasing age. Also, as alluvial fans get older, the possibility of surface disturbance increases (Owen et al. 2014). Northern hemisphere alluvial fans older than 300 ka have experienced three complete glacier-interglacial cycles, increasing the likelihood of surface disturbance by erosion and occasional minor deposition during wetter and cooler climate periods. This could result in ages that are too young.

While the 10Be TCN technique used here has been widely employed for surface exposure dating, it does

Figure 15. Along-strike slip rate estimates on the Calico Fault. (a) Colour represents age. ALR: 3.2 ± 0.4 mm/yr from this study; B: 1.4±0.4 mm/yr from the ‘B’ alluvial fan in Oskin et al. (2007a); K: 1.6±0.3 mm/yr from the ‘K’ alluvial fan in Oskin et al. (2007a); Q2c: 1.4±0.8 mm/yr from the ‘Q2c’ depth profile in Selander (2015). (b) Fault map shows the area outlined by dashed magenta box in Figure 1. Blue circles mark the geologic sites corresponding to (a). Light blue circle shows location of the TR alluvial fan. Black lines show major fault traces from U.S. Geological Survey and California Geological Survey (2006).
rely on several assumptions for both pre- and post-
formation history, including inheritance, erosion, and
shielding. For the ALR alluvial fan, although most
rock samples have age estimates of ~100 ka, we
interpret these as underestimates of the true age
of the landform because these ages are incompati-
able with soil, pavement, and carbonate rind de-
velopment, and are well beyond the age estimate from
the depth profile CalicoA. There are several explana-
tions for ages that are too young, including shield-
ing from cosmic rays due to sediment cover and
later exhumation, toppling or rotation of the
sampled clasts during erosional events, weathering
(spallation), and bioturbation. The large range of age
estimates (both rock samples and depth profiles) in
both our study and other published studies reflects
the multiple different surface processes operating on
alluvial fan surfaces and clasts that can make
10Be TCN data and other exposure age data challenging
to interpret. We note, however, that our data exhibit
no more scatter than other comparable studies
(Figure 16).

Limited sampling can also lead to uncertainties and
biases in geological slip rate estimates. Ideally, hun-
dreds of samples would allow more rigorous assess-
ment and statistical characterization of the various
processes listed above that affect results. Unfortunately, this is well beyond current capabilities.
For example, our preferred age estimate for the ALR
alluvial fan is based on only the oldest rock sample; we
interpret our other samples to be biased to younger
ages. Similarly, in the study of Oskin et al. (2007a), the
‘B’ fan was assigned an age of 650 ± 100 ka based on a
single sample, the one with the oldest cosmogenic
3He exposure age (653.4 ± 19.8 ka; the second oldest age is
418.9 ± 12.6 ka), plus 40Ar/39Ar dating of two flows with
ages of 770 ± 40 ka and 735 ± 9 ka, and all other
3He dated samples yield much younger ages. The samples
used for 40Ar/39Ar dating were also located several kilo-
metres away from the source (Pipkin Basalt Flows, see
Figure 2(a) in Oskin et al. (2007a). The ages of these
samples may therefore represent upper bound for the
formation age of the ‘B’ fan. In the same study, the ‘K’
fan was dated using both TCN 3He and 10Be. While 10Be

![Figure 16. Ages of dated samples from Oskin et al. (2007a, 2007b), Selander (2015), and this study grouped in older (B and ALR)
and younger (K, Q2c, TR) alluvial fans. Black dots with error bars show 10Be dated ages, triangles with error bars show 3He dated
ages, squares with error bars show 40Ar/39Ar dated ages, note that some age error bars are smaller than the markers. Red squares
with error bars show preferred estimates, note that Q2c unit age is from a depth profile. Note that ‘B’ fan studied by Oskin et al.
(2007a, 2007b) uses data from three techniques: 40Ar/39Ar, 3He and 10Be. Outliers near the beginning and end of 40Ar/39Ar step-
heating runs are omitted. Also note that the 90 m displacement for the TR alluvial fan is an estimate by aligning the northwestern
edges of the TR alluvial fan surfaces (Figures 7(i–I) and 8(c,g)). Dashed blue line marks the TR alluvial fan age from OSL dating (5 ka).
Locations of these fans are shown in Figure 15(b). Details of these ages are in Table 2.](<null>)
dating gave consistent ages, ^3He dating results spanned a large range (more than a factor of 2) and hence were not used to define the exposure age of the ‘K’ fan. In both our study and the study of Oskin et al. (2007a) (and indeed most similar studies), the limited number of dated samples, the wide range of apparent ages, and the necessity of using selection criteria, increase the chances of biased results (Figure 16).

Young alluvial fans likely experienced less erosion but inheritance in TCN dating can be more significant due to their short exposure periods, as illustrated by the OSL results for the TR alluvial fan. Old alluvial fans likely experienced more erosion, but inheritance is dwarfed by the long post-formation exposure ages. Based on our data and several other studies (e.g. Oskin et al. 2007a; Frankel et al. 2011), the apparent ages of rock samples from an alluvial fan surface dated by TCN exposure age techniques tend to be distributed similarly to a chi-square distribution (Figure 17). For a young alluvial fan (a few tens of ka or younger; e.g. ‘K’ fan and the TR alluvial fan in Figure 16), apparent ages tend to skew towards older values because of inheritance (e.g. this study; Oskin et al. 2007a; Frankel et al. 2011). Hence the OSL results may be more reliable. In contrast, for older alluvial fans (hundreds ka or older; e.g. ‘B’ fan and the ALR alluvial fan in Figure 16), apparent ages tend to skew towards younger values because of disturbance and erosion (e.g. this study; Oskin et al. 2007a). While these considerations help in selecting reliable ages from an ensemble of apparent ages, it is clear that biases can occur.

These considerations suggest to us that the uncertainties of geologic slip rate estimate are often underestimated (see also Bird 2007; and Zechar and Frankel 2009). Even judicious selection criteria can lead to significant scatter in results (Figure 18). If Bird’s (2007) criterion for the minimum number of independent estimates required for reliable rate determinations is applied, even with our current study, we are far from having a robust picture for the slip rate history of individual faults in the Mojave section of the ECSZ, or the summed geologic rate across the shear zone.

Regarding on-fault slip rates (our fourth explanation), the slip rate of 3.2 ± 0.4 mm/yr from the ALR alluvial fan data is significantly faster than the estimate of 1.8 ± 0.3 by Oskin et al. (2007a) at a site that is only ~7 km away. However, these data could be reconciled if: (1) fault slip is almost completely localized onto the surface offset at ALR alluvial fan during its slip period; and (2) the offset studied by Oskin et al. (2007a) missed some off-fault deformation.

Dolan and Haravitch (2014) considered all faults in the Mojave section of the ECSZ as structurally immature, with strain not yet completely localized onto a narrow high strain fault core. Using their criteria, most ECSZ fault studies have underestimated slip rates. Dolan and Haravitch (2014) suggested that the slip rates of immature faults in the Mojave ECSZ have been underestimated by ~40%, even along straight, continuous, structurally simple sections of surface rupture. Using modified fault configurations, Herbert et al. (2014a) found that off-fault deformation accounts for 40 ± 23% of the total strain across the ECSZ, with higher percentages near places where faults terminate or bend. If the value of 40 ± 23% applies to most major faults in the Mojave region including the Calico Fault, then scaling Oskin et al.’s (2007a) result by this amount gives 3.0 ± 1.3 mm/yr, equivalent to our result within uncertainties. If this explanation is correct, it implies that surface geomorphic markers in this region record a variable portion of total displacement. In a similar environment, Fletcher et al. (2014) mapped surface ruptures caused by the M_w 7.2 El Mayor-Cucapah earthquake in 2010, finding that surface displacements varied along strike by orders of magnitude within a few kilometres along the trace of the fault.

![Figure 17](image-url)

Figure 17. Hypothetical apparent age distribution for alluvial fans of different ages based on surface exposure dating using the TCN method. (a) Probability of sample ages from a relatively young fan, black curve shows a chi-square distribution reflecting increased likelihood of inheritance. (b) Probability of sample ages from a relatively old fan, black curve shows a chi-square distribution, reflecting increasing likelihood of surface disturbance. Note the scale of age in (b) is different from (a).
It should be noted that Oskin et al. (2007a) considered the possibility of off-fault deformation within a few hundred metres of the Calico fault. However, a related factor not considered by Oskin et al. (2007a) is the possibility of an unexposed and unmapped fault strand farther away that locally carries some of the slip at the more northern Calico site, but is not present at the location of the ALR and TR alluvial fans. Such unmapped strands may be especially problematic in the Mojave Desert, where widespread young alluvial deposits obscure the geomorphic effects of slow-moving strike-slip faults and limit the number of clear offset markers. For example, Rockwell et al. (2000) noted that the southern part of the Landers earthquake rupture occurred on a previously unmapped fault.

The total displacement on a fault can help to constrain estimates of present day fault slip rate if the initiation age of the fault is known and if the slip rate history follows a simple evolutionary path, for example, a monotonic increase in rate through time until fault maturity is reached (Gourmelen et al. 2011). Total displacement may also help to address the issue of unaccounted off-fault deformation. Assuming it is estimated using an older, well-defined offset marker, total displacement should account for both on- and off-fault deformation. More generally, total displacement and slip rate history together help to define the evolutionary process of faulting and fault maturity.

Total displacement across the Calico Fault is estimated to be 9.8 km (Glazner et al. 2000; Oskin et al. 2007a). While we lack hard data on the age of slip initiation, some constraints are available. The most likely time for initiation of ECSZ faulting as a whole is sometime after the inland jump of the Pacific-North America plate boundary. Marine incursion into the northern Gulf of California is dated at 6.2 ± 0.2 Ma (Bennett et al. 2015). The ECSZ likely formed soon after this time. Lee et al. (2009) suggested a 2.8 Ma initiation age for the Saline Valley–Hunter Mountain–Panamint Valley fault system north of the Garlock Fault, which may be kinematically related to the central faults of the Mojave ECSZ, including the Calico Fault. Dixon and Xie (2018) proposed a 4.1 Ma initiation age for the Calico Fault. Andrew and Walker (2017) proposed an initiation age for the Blackwater Fault, immediately northwest of the Calico Fault, at or after 3.8 Ma. In the analysis that follows, we investigate models with initiation ages of 2.8 and 6.2 Ma.

While firm conclusions cannot be drawn regarding slip rate and its relation to initiation age and total displacement, it is possible to rule out certain combinations of parameters. For example, both constant rate and constant acceleration models are inconsistent with initiation ages of 4.1 Ma or younger and present-day slip rate of 1.8 mm/yr (the total displacement would be smaller than observed; Figure 19(a)).

Gourmelen et al. (2011) proposed a damage growth model for young faults that results in an intermediate style of fault evolution, more rapidly than a constant acceleration model, but more slowly than a constant rate model (the latter implies essentially instantaneous acceleration at fault initiation). In the damage growth model, slip rate ramps up on time scales of several hundred thousand to several million years from zero at fault initiation to some steady state rate. The time from fault initiation to maximum acceleration is given by the Rayleigh scale parameter \(S \), which occurs at roughly one half the final rate (Gourmelen et al. 2011). Figure 19(b) shows slip rate as a function of time for this model for a fault with 9.8 km displacement and an initiation age of 4.1 Ma, i.e., slightly older than the age proposed by Andrew and Walker (2017). Possible present-day rates range from 2.5 to 5.6 mm/yr. Figure 19(c) shows the range of permissible models for all initiation ages between 2.8 and 6.2 Ma.

Figure 18. Age and displacement estimates for the Calico Fault from Oskin et al. (2007a, 2007b), Selander (2015) and this study. (a) Black dots with error bars show \(^{10}\)Be dated ages, triangles with error bars show \(^{3}\)He dated ages, squares with error bars show \(^{40}\)Ar/\(^{39}\)Ar dated ages. Red squares with error bars show preferred estimates. Note that some age error bars are smaller than the markers. Insert box expands data near origin. (b) Preferred estimates only, same as red square markers shown in (a). Grey lines show different mean slip rates for reference.
ages \(t_0 \) between 2.8 and 6.2 Ma, using a range of values for \(S \) between 0.1 and 2.5 Ma. For a 2.8 Ma initiation age, possible values of present-day slip range from 3.5 to 9.3 mm/yr; For a 6.2 Ma initiation age, possible values of present-day slip rate range from 1.6 to 3.0 mm/yr.

If our new estimate of 3.2 ± 0.4 mm/yr is representative of the true slip rate of the Calico Fault (explanation number 4), it increases the cumulative geologic slip rate for the Mojave section of the ECSZ. If the ‘slip deficit’ noted in previous studies is largely due to fault immaturity, off-fault deformation, and underestimated slip, we can better approximate the overall geologic slip across the ECSZ by using our new result for the Calico Fault, and scaling on-fault geologic slip rates for remaining five major faults by some amount of off-fault deformation. There are various ways to do this. Using Herbert et al.’s (2014a) estimate of off-fault deformation (40 ± 23%) for the remaining five ECSZ faults, then the total geologic slip rate across the ECSZ becomes 10.5 ± 3.1 mm/yr (using the rates in Oskin et al. (2008) for the other five ECSZ faults; uncertainty in off-fault deformation of Herbert et al. (2014a) is considered), equivalent within uncertainties to the geodetically derived rate (Figure 20).

Given the importance of fault slip rate in seismic hazard estimates and fault evolution studies, the above discussion highlights the importance of continued research, and development of new approaches to fault slip rate determination over different time spans. For young alluvial fans such as the TR fan, perhaps the use of landscape evolution models convolved with active faulting could better account for the effects of erosion and refine the displacement estimates, and hence the slip rate estimates (Figure 14).

We suggest that available data do not support a discrepancy between the summed geodetic rate across this section of the ECSZ and corresponding geologic rates averaged over the last few hundred thousand years, once the true uncertainty of these approaches has been considered. Since seismic hazard is closely related to fault slip rate, if discrepancies are observed, the faster rates (in this case based on the geodetic data) should be considered for seismic hazard estimates, until proven otherwise. This finding applies not only to the Mojave region, but also to other new or rapidly evolving plate boundary zones, where surface faults are immature, may be poorly exposed at the surface, and may have very low (or even zero) geologic slip rate estimates. The 2003 Bam earthquake in Iran, for example, was responsible for ~30,000 fatalities and occurred on a fault with limited surface exposure (Talebian et al. 2004; Fialko et al. 2005). Geologic studies on this fault, had they been done, would have indicated a slip rate of essentially zero. The tectonics of that region have clear similarities with the region studied here (Dixon and Xie 2018).

7. Conclusions
Our new slip rate estimate for the Calico Fault of 3.2 ± 0.4 mm/yr highlights the possibility that some fault slip rates in the Mojave Desert may have been
under-estimated. This may be related to the limited number of studies in the region and the highly discontinuous and complex nature of the fault system. Among these immature young faults, where distributed deformation is common, total offset is not necessarily manifested as simple surface offset across a discrete fault plane; unmapped fault strands may be common. We also suggest that geologically determined slip rates have uncertainties that may be under-estimated. The overall ~10–12 mm/yr geodetic slip rate across the ECSZ is likely equivalent to the summed geologic rate across the region if our new estimate better represents the true slip rate along the Calico Fault system, if reasonable amounts of distributed deformation and unmapped faulting away from the major faults are taken into account (Figure 20), and if realistic uncertainties are considered. Until the origins of the apparent rate discrepancy for the ECSZ are fully understood, the faster geodetic rate should be considered for seismic hazard estimates in the region.

Acknowledgements

We acknowledge Amelia Nachbor of the University of South Florida for help with the field work, and Antonio Luna for help with some sample preparation. Sarah Hammer and Kat Rivers at the University of Cincinnati are also thanked for help in sample preparation. We thank OpenTopography for providing LiDAR raster data, and USGS for providing high-resolution aerial ortho-imagery. Mike Oskin, David Katopody, and an anonymous reviewer are thanked for their thoughtful comments.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the U.S. Geological Survey [G16AP00102 (PHW and THD), G16AP00103 (LAO)].

ORCID

Surui Xie http://orcid.org/0000-0002-1484-0671
Elisabeth Gallant http://orcid.org/0000-0001-6841-3694
Paula M. Figueiredo http://orcid.org/0000-0002-5625-9295
Lewis A. Owen http://orcid.org/0000-0002-2525-5160
Craig Rasmussen http://orcid.org/0000-0003-4344-4800
Rocco Malservisi http://orcid.org/0000-0003-1767-8187
Timothy H. Dixon http://orcid.org/0000-0002-5127-0583

References

Fulton, P.M., Schmalzle, G., Harris, R., and Dixon, T.H., 2010, Reconciling patterns of interseismic strain accumulation with thermal observations across the Carrizo section of

