2010 Fall Meeting Search Results

Your query was:

augustin

HR: 1340h	
AN: NG23A-1382 Poster	
TI: Application of computational software to model the geochemical and	
geomechanical interactions in geologic carbon sequestration sites	
AU: *Augustin, C M	
EM: c.augustin@umiami.edu	
AF: Marine Geology and Geophysics, University of Miami, Miami, FL, USA	
AU: Swart, P K	
EM: pswart@rsmas.miami.edu	
AF: Marine Geology and Geophysics, University of Miami, Miami, FL, USA	
AU: Dixon, T H	
EM: tdixon@rsmas.miami.edu	
AF: Marine Geology and Geophysics, University of Miami, Miami, FL, USA	
AU: Riemer, D D	
EM: driemer@rsmas.miami.edu	
AF: Marine Geology and Geophysics, University of Miami, Miami, FL, USA	
AB: Long-term subsurface containment of carbon dioxide is a key objective of	
geological carbon dioxide storage in porous rock. In the United States, saline	
aquifers are the most promising vessel for geologic storage because they	
represent the largest capacity and greatest long-term stability forecasts. To realize	
the potential of geologic carbon dioxide sequestration, it is essential to understand	
the behavior of the carbon dioxide plume, the injection aquifer, and the reservoir	
seal. In hydrocarbon fields, it is known that the total stresses can change during	
fluid-pressure depletion. However, it is not yet understood whether fluid injection	
will have significant effects on total stresses in a reservoir scale sequestration. We	
seek to understand the relationship between the injected carbon dioxide and key	
reservoir formation characteristics by using geochemical computational software	
such as The Geochemist's Workbench, TOUGH, and NUFT/XTools. Through	
modeling these multiphase flow processes, we aim to understand the maximum	
sustainable pore-fluid pressures for injection sites by incorporating poroelastic	
behavior of reservoir rock into our dataset. The purpose of this simulation study is	
to understand the effects of CO2 injection on the geomechanical reservoir	
structures. Although our simulations are based on data available for the Farnham	
Dome, Utan sequestration site, the conclusions drawn from their analysis are	
equally relevant to the general saline aquiter environment.	
DE. [4400] NUNLINEAR GEOPHI SIGS / PHase Italisilions	
DE. [0314] FOLIOT SOIENCES / Demand eStimation SC: Nonlinear Geophysics (NG)	
MN: 2010 Fall Maating	
IVIN. ZUTU FAII IVIEELIIY	

New Search

AGU Home