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Abstract Functional Regulation via small structural changes (c) Comparison between multiple conformational ensembles
Background: Protein activities are regulated tightly in Dbiological environments. An (a) Negligible overlap between conformational densities of states Inactive Active
understanding of their regulatory mechanisms entails assessment of their various states, A " : Intersecting signaling pathways: AR a0 C ARy
including active and inactive states. For many proteins, their states can be distinguished Inactiv L
based %n their minimum-energy conformg’[ions since, the magnitudes of S’[Jhermal > ARint := ARp2 N ARps N AR pam
fluctuations, or dynamics, are negligible compared to the differences in minimum-energy : olivaton i | | | N ARx1 N ARy
structures. This approximation, however, breaks down for several other proteins. The states $ barrier AR x; N AR x9 is defined by the inequalities:
of these proteins can only be distinguished categorically from each other when their finite- ' : .
temperature conformational ensembles are considered alongside their minimum-energy 1) min{nx1,nx2} > Nx1/Xx2
structures. The list of such proteins has grown rapidly in the last decade, which now Conformation . Conformation g '
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includes GPCRs, PDZ domains, nuclear transcription factors, heat shock proteins, T-cell
receptors and viral attachment proteins. Applicability of molecular simulations toward (b) Discernible overlap between conformational densities of states

understanding mechanisms in this latter category of proteins requires development of new { S
methods that can deal with high-dimensional conformational ensemble data. \A/\?\/\
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Description: The traditional approach to compare protein conformational ensembles is to | mmeJ b Ngspom # ¢ represent n-pairs that
compare their respective summary statistics. However, if a subset of the summary statistics > - satisfy inequality 1.
from the two ensembles is found to be identical, it does not imply that the remaining - i G() EnBz'"e GB2m) Maoss o | Filled circles that lie
summary statistics will also be identical. The general problem of finding and choosing a 8 _small & within the brown band
feature that appropriately distinguishes ensembles can be overcome by comparing satisfy inequality 2.
ensembles directly against each other and prior to any dimensionality reduction. We have 2 Ne2Bom
developed a method to accomplish just that — it performs excellently for both Gaussian and _ — _ > h<
non-Gaussian distributions. The difference between ensembles is computed by solving the Conformation Conformation G(B2)
inverse machine learning problem and in terms of a metric that satisfies the conditions set . .
forth by the zeroth law of thermodynamics. (a) Comparison between two conformational ensembles
Cpr_lclusmns: Such a qugnt_n‘lcatlon p_errplts sta_tlstlcal _analyses a_nd guantitative dgta AR;,: comprises of 106 residues, which is ~25% of the residues in the G head domain.
mining necessary for establishing causality in protein functional regulation. We have applied Unbound NiV-G
this method to (a) quantitatively understand the effect of ligand binding on the structure and . NIV boundto Ephrin B2 X 1.0 Adjacent monomer in G dimer
dynamics of a viral protein whose function is controlled by dynamic allostery; (b) understand = | 09 | : !
the role of water in the inception of allosteric signals; (c) determine intersecting signaling o 15 | 0s | 86 - Q S
pathways. This method is available under standard GNU license on SimTk.(https:/ ‘g’ ol B o} voos do Ak R
simtk.org/projects/conf_ensembles). o " | . = Mg 07 B1g \. {xé‘;f Q< D468
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Traditionally, a support vector machine (SVM) is used for binary classification. It is first AP Eelow the diagonal undergo (
trained on a set of instances for which their group identities are known, and then used for | s) g changes in side chain
predicting the group identities of unclassified instances. In our approach, we train the SVM - A.,% : orientations and/or
to recognize the difference of two n-particle conformational ensembles, but instead of Ll N Small contribution to conformational entropy. 1.0 e
using the trained SVM for predictive purposes, we utilize the mathematical properties of ’ G211 & NIV fuston Residues that lie above the 0.9 / AR
the underlying classification function to obtain a physically meaningful quantitative diagonal represent cases — : o -
estimate for the difference between the ensembles. The method is trained on Gaussian i f i if iati < o8 | O . g
- (b) Comparison between two conformational ensemble shifts where backbone deviations 7 | [eloe
distributions, and works excellently without need for any data fitting. From a theoretical are swamped by smaller = 07 e A, AN
standpoint, the method should also work for multi-Gaussian distributions, and by  Example: Effect of force field on ligand-induced conformational ensemble shifts. Mz changes in whole residue > I
extension, for any distribution, because the overlap between two multi-Gaussian  and 7,,.. are computed, respectively, from stochastic dynamics simulations in explicit deviations. 06 L
distributions is essentially a sum of overlaps between Gaussian distributions, and implicit solvent. 05 Ko o . . .
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