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Background: Protein activities are regulated tightly in biological environments. An 
understanding of their regulatory mechanisms entails assessment of their various states, 
including active and inactive states. For many proteins, their states can be distinguished 
based on their minimum-energy conformations since, the magnitudes of thermal 
fluctuations, or dynamics, are negligible compared to the differences in minimum-energy 
structures. This approximation, however, breaks down for several other proteins. The states 
of these proteins can only be distinguished categorically from each other when their finite-
temperature conformational ensembles are considered alongside their minimum-energy 
structures. The list of such proteins has grown rapidly in the last decade, which now 
includes GPCRs, PDZ domains, nuclear transcription factors, heat shock proteins, T-cell 
receptors and viral attachment proteins. Applicability of molecular simulations toward 
understanding mechanisms in this latter category of proteins requires development of new 
methods that can deal with high-dimensional conformational ensemble data. 
Description: The traditional approach to compare protein conformational ensembles is to 
compare their respective summary statistics. However, if a subset of the summary statistics 
from the two ensembles is found to be identical, it does not imply that the remaining 
summary statistics will also be identical. The general problem of finding and choosing a 
feature that appropriately distinguishes ensembles can be overcome by comparing 
ensembles directly against each other and prior to any dimensionality reduction. We have 
developed a method to accomplish just that – it performs excellently for both Gaussian and 
non-Gaussian distributions. The difference between ensembles is computed by solving the 
inverse machine learning problem and in terms of a metric that satisfies the conditions set 
forth by the zeroth law of thermodynamics. 
Conclusions: Such a quantification permits statistical analyses and quantitative data 
mining necessary for establishing causality in protein functional regulation. We have applied 
this method to (a) quantitatively understand the effect of ligand binding on the structure and 
dynamics of a viral protein whose function is controlled by dynamic allostery; (b) understand 
the role of water in the inception of allosteric signals; (c) determine intersecting signaling 
pathways. This method is available under standard GNU license on SimTk.(https://
simtk.org/projects/conf_ensembles).
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Intersecting signaling pathways:  

Conformational sampling over 3 collective variables  

Traditionally, a support vector machine (SVM) is used for binary classification. It is first 
trained on a set of instances for which their group identities are known, and then used for 
predicting the group identities of unclassified instances. In our approach, we train the SVM 
to recognize the difference of two n-particle conformational ensembles, but instead of 
using the trained SVM for predictive purposes, we utilize the mathematical properties of 
the underlying classification function to obtain a physically meaningful quantitative 
estimate for the difference between the ensembles. The method is trained on Gaussian 
distributions, and works excellently without need for any data fitting. From a theoretical 
standpoint, the method should also work for multi-Gaussian distributions, and by 
extension, for any distribution, because the overlap between two multi-Gaussian 
distributions is essentially a sum of overlaps between Gaussian distributions,

Residues that are close to the 
diagonal undergo shifts 
primarily in backbone 
positions. Residues that lie 
below the diagonal undergo 
changes in side chain 
orientations and/or 
conformational entropy. 
Residues that lie above the 
diagonal represent cases 
where backbone deviations 
are swamped by smaller 
changes in whole residue 
deviations.

Example: Effect of force field on ligand-induced conformational ensemble shifts.              
and              are computed, respectively, from stochastic dynamics simulations in explicit 
and implicit solvent. 
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Figure 2: Increase font sizes for the main plots. 
Increase font sizes for the insets. 
Add MAE and Corr values
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Figure 3: Performance of ⌘ estimated from F (r) against its exact value (1� ||R\R0||). For each of the three types of multimodal
distributions, (a) bimodal distributions (R =

P2
i=1 ci

f
i

), (b) trimodal distributions (R =
P3

i=1 ci

f
i

), and (c) quadrimodal
distributions (R =

P4
i=1 ci

f
i

), we generate 400 random pairs (R, R0) by modulating the weighting coefficients c as well as
the attributes of Gaussian functions f . Representative distribution pairs are shown as insets, where the shaded portions indicate
the overlap (||R \ R0||) between the distributions. Performance is quantified using mean absolute errors (MAE) and Pearson
correlation coefficients (⇢).

We also note from Fig. 4a that while the two simulations of the ephrin bound state yield identical RBD-RBD orientations,
the two simulations of the ephrin free state yield slightly different RBD-RBD orientations. To understand the latter, we visualize
in Fig. 4b the RBD-RBD interfaces obtained from these simulations in the context of the position of the FAD. We note that the
FAD will interact more extensively with the RBDs in the ephrin free state, as compared to the ephrin bound state. Therefore, the
reason the two simulations of the ephrin free state produce slightly different RBD-RBD interfaces could be due to the absence of
the RBD-FAD interface in our simulations. Nevertheless, the primary outcome of these simulation is that ephrin binding induces
a significant change in the RBD-RBD orientation.
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Figure 4: (a) Time evolutions of collective variables that describe the interface between the two RBDs of a dimer. The two lines
for each of the ephrin free and ephrin bound states indicate two separate MD simulations. d

CoM

is the distance between the
centers of masses (CoM) of the backbone atoms of the two RBDs. ✓

tilt

is the angle between the central axes, â and â0, of the
two RBDs. ✓

roll

is the angle of rotation of the RBD about its central axis. The geometrical definitions of ✓
tilt

and ✓
roll

are
provided in Fig. S5 in the Supporting Material. (b) Final snapshots of the RBD-RBD interface in MD simulations. Note that
two superimposed structures are shown for the ephrin free state, as the two simulations in the ephrin free state produced slightly
different RBD-RBD geometries. The location of the FAD relative to the RBD-RBD dimer is depicted according to structure of
the full length ectodomain proposed by Broder and coworkers (5), which was homology modeled on the X-ray structures of the
G analogs in the Newcastle Disease Virus and the parainfluenza virus (4, 11, 12).
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Water dynamics at protein-protein interfaces: A molecular dynamics
study of virus-host receptor complexes
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Abstract

The dynamical properties of water at biological interfaces are different from those in bulk water. Experiments as well as
simulations indicate that water diffuses and orients at rates that depend on both the chemistry as well as the topology of the
interface. Here we utilize molecular dynamics simulations to determine the nature and extent to which the dynamical proper-
ties of water are shifted from their bulk values when they occupy interstitial regions between two proteins. We consider two
natural protein-protein complexes, one in which the Nipah virus G protein binds to cellular ephrin B2, and the other in which
the same G protein binds to ephrin B3. These protein-protein interactions constitute the first step in Nipah infection. We find
that despite the low sequence identity of 50% between ephrins B2 and B3, the dynamical properties of interstitial waters in the
two complexes are similar. In both cases, we find that the interstitial waters diffuse ten times slower compared to bulk water.
In addition, despite their resolution in crystal structures, more than 95% of the waters in the interstitial regions exchange
with the bulk within 150 ns. The interstitial waters also exhibit dipole relaxation times and hydrogen bond lifetimes an order
in magnitude longer than bulk water. These deviations from bulk values are generally much larger than those observed at
protein-water interfaces. To gauge the functional relevance of the interstitial water, we examine quantitatively how implicit
solvent models compare against explicit solvent models in producing ephrin-induced shifts in the G configurational density.
Ephrin-induced shifts in the G configurational density are critical to the allosteric regulation of viral fusion. We find that the
two methods yield strikingly different induced changes in the G configurational density, which suggests that the interstitial
waters may also contribute to the allosteric signaling, and therefore, are functionally important.

Insert Received for publication Date and in final form Date.
Correspondance: svarma@usf.edu

Introduction

The dynamical properties of water at biological interfaces are different from those in bulk water (? ? ? ? ? ? ? ? ? ? ? ). How
are they different?

In general, the fundamental trend observed from experiments and simulations is that water diffuses, relaxes and orients
slower at protein-water and lipid-water interfaces, as compared to in the bulk.

1. First hydration shell of proteins in denser
IMPORTANT FOR METHODS: crystal WATERs in B2 and not B3. So retaining the crystal waters has not effect on the

overall properties.
———— Equations:
⇢/⇢0
r (Å)
————
Probing the folding and unfolding processes of proteins as a function of temperature is a major challenge in biophysics.

Here we examine the effects of temperature spikes that heat and cool proteins within tens of nanoseconds. Our results show
these spikes are capable of causing irreversible changes sufficient to eliminate protein activity.

© 2013 The Authors
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The dynamical properties of water at biological interfaces are different from those in bulk water. Experiments as well as
simulations indicate that water diffuses and orients at rates that depend on both the chemistry as well as the topology of the
interface. Here we utilize molecular dynamics simulations to determine the nature and extent to which the dynamical proper-
ties of water are shifted from their bulk values when they occupy interstitial regions between two proteins. We consider two
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that despite the low sequence identity of 50% between ephrins B2 and B3, the dynamical properties of interstitial waters in the
two complexes are similar. In both cases, we find that the interstitial waters diffuse ten times slower compared to bulk water.
In addition, despite their resolution in crystal structures, more than 95% of the waters in the interstitial regions exchange
with the bulk within 150 ns. The interstitial waters also exhibit dipole relaxation times and hydrogen bond lifetimes an order
in magnitude longer than bulk water. These deviations from bulk values are generally much larger than those observed at
protein-water interfaces. To gauge the functional relevance of the interstitial water, we examine quantitatively how implicit
solvent models compare against explicit solvent models in producing ephrin-induced shifts in the G configurational density.
Ephrin-induced shifts in the G configurational density are critical to the allosteric regulation of viral fusion. We find that the
two methods yield strikingly different induced changes in the G configurational density, which suggests that the interstitial
waters may also contribute to the allosteric signaling, and therefore, are functionally important.
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Introduction

The dynamical properties of water at biological interfaces are different from those in bulk water (1–3, 6–13). How are they
different?

In general, the fundamental trend observed from experiments and simulations is that water diffuses, relaxes and orients
slower at protein-water and lipid-water interfaces, as compared to in the bulk.

1. First hydration shell of proteins in denser
IMPORTANT FOR METHODS: crystal WATERs in B2 and not B3. So retaining the crystal waters has not effect on the

overall properties.
———— Equations:
⇢/⇢0
r (Å)
r = 10 Å
————
Probing the folding and unfolding processes of proteins as a function of temperature is a major challenge in biophysics.

Here we examine the effects of temperature spikes that heat and cool proteins within tens of nanoseconds. Our results show
these spikes are capable of causing irreversible changes sufficient to eliminate protein activity.
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Inverse machine learning

Abstract Functional Regulation via small structural changes

(a) Comparison between two conformational ensembles

(b) Comparison between two conformational ensemble shifts

(c) Comparison between multiple conformational ensembles
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an extended ensemble approach (38,39) and with a coupling constant of 1 ps.
An extended ensemble approach is also used for maintaining pressure (40).
Pressure is maintained at 1 bar using a coupling constant of 1 ps and a
compressibility of 4:5! 10"5 bar"1. NaCl concentration is set at 150 mM,
and there are extraNaþ ions compared toCl" ions tocompensate for the charge
on the protein. Electrostatic interactions are computed using the particle mesh
Ewald scheme (41) with a Fourier grid spacing of 0.1 nm, a fourth-order inter-
polation, and a direct space cutoff of 10 Å. The van derWaals interactions are
computed explicitly for interatomic distances%10 Å. The bonds in proteins
and the geometries of water molecules are constrained (42,43), and conse-
quently an integration time step of 2 fs is employed. The protein and ions
are described using OPLS-AA parameters (44), and the water molecules are
described using TIP4P parameters (45).We note thatwe do notmodel induced
effects explicitly; however, such effects are generally more important for
describing ionic interactions (46,47). Convergence is administered by tracking
time evolutions of conformational RMSDs, pressure, potential energies, and a
set of collective variables that describe RBD-RBD interfaces.

Construction of RBD-RBD dimer models

While there are no experimental structures of the RBD-RBD dimer of Ni-
pah G, there is sufficient experimental data to construct the initial dimer
model for carrying out MD simulations. Firstly, x-ray structures are avail-
able for the isolated Nipah RBD as well as its complex with ephrin (25,26).
Secondly, both the ephrin-free and ephrin-bound structures of Nipah RBD
have been subjected to MD at physiological temperature, and have been
found to be stable (28,29). Thirdly, Bowden et al. (12) have proposed a
RBD-RBD interface for the G protein of the Hendra virus (PDB: 2X9M).
This interface serves as a suitable template to construct the initial model
of the RBD-RBD interface of Nipah G because 1) the G protein of Hendra
is a closely related homolog of the Nipah G protein (89% sequence similar-
ity; see Fig. S1 in the Supporting Material), and 2) x-ray structures of the
ephrin-free and ephrin-bound states of Hendra’s RBD closely match the
respective x-ray structures of Nipah’s RBD (Fig. S2).

The RBD-RBD interface of Hendra’s G protein was proposed (12) by
consolidating data concerning the 1) packing interactions within crystals,
2) conservation patterns within RBD-RBD interfaces of analogous receptor
binding proteins of other paramyxoviruses, and 3) distribution of N-linked
glycosylation sites on the RBD. In particular, the distribution of glycosyl-
ation sites on the RBDs of Nipah and Hendra are such that they permit
only one specific face of the RBD to dimerize with an adjacent RBD—
the remaining faces of the RBDs contain protruding glycosyl chains that
will produce steric clashes. Therefore, there is absolutely no ambiguity con-
cerning the dimerization face of the RBD. However, as Bowden et al. (12)
also point out, there is ambiguity concerning the relative orientation be-
tween the two RBDs. Nevertheless, the Nipah RBD-RBD model con-
structed using Hendra template will serve as an excellent starting point
for MD simulations, which we, as such, utilize to determine the relative
orientations between RBDs.

To construct the initial model of the RBD-RBD interface in the ephrin-
free state, we take the final snapshot (640 ns) from our earlier simulation
of the monomeric form of Nipah’s RBD (28), and geometrically fit two
of its copies individually onto the two RBDs of Hendra’s RBD-RBD dimer.
Geometric fitting is conducted using the backbone Ca atoms. The two geo-
metric fits produced identical least squared fit values, which are expected
because the RBD-RBD interface is symmetric. We also consider the fits
excellent (RMSD < 2 Å). The templated model is shown in Fig. S3. We
use the same protocol to construct the initial model of the RBD-RBD dimer
in the ephrin-bound state, but in this case we take the final snapshot (460 ns)
of our simulation of Nipah’s ephrin-bound RBD monomer (28) (Fig. S3).
Even in this case, we find that the geometric fits are excellent (RMSD <
2 Å). The reason that the structures of both the ephrin-free and ephrin-
bound RBDs fit excellently on to the RBD of Hendra is because, as we
note in Fig. 2, the difference between the ephrin-free and ephrin-bound
structures of the RBD is small (25,26,28,29). Note that after fitting the

RBD of the ephrin-RBD complex to the RBD of the Hendra RBD-RBD
template, we apply the resulting rotational matrix to ephrin. Note also
that we retain the water molecules sandwiched between ephrin and the
RBD and apply the rotational matrix to these water molecules. We have
found these interstitial waters are critical to not only the structural integrity
of the RBD-ephrin interface, but also to the inception of the ephrin binding
signal at the RBD-ephrin interface (48). The two constructed RBD-RBD di-
mers are energy minimized, solvated separately in salt solutions, and then
subjected to MD. The ephrin-free state is comprised of 356,770 particles,
and the ephrin-bound state is comprised of 435,254 particles.

Comparison of conformational ensembles

The traditional approach to compare two conformational ensembles of
proteins, ℝ ¼ fr1; r2;.; rmg and ℝ0 ¼ fr01; r02;.; r0mg, where r denotes a
3n-dimensional coordinate and m denotes the number of conformations
in the ensemble, is to compare their respective summary statistics, like cen-
ters-of-mass (COMs) and root mean square fluctuations. However, if a sub-
set of the summary statistics of the two ensembles is found to be identical, it
does not imply that all of the 3n" 6 summary statistics of two ensembles
will also be identical. The general problem of finding and choosing a
feature that appropriately distinguishes two ensembles can be overcome
by comparing ensembles directly against each other, and before any dimen-
sionality reduction (28,29,48). A further advantage of comparing ensembles
directly against each other is that the resulting quantification naturally em-
bodies differences in conformational fluctuations.

We compare ensembles directly against each other using amethodwe devel-
oped recently (29). It quantifies the difference between two ensembles in terms
of ametric, h, which satisfies two conditions: (1) hðℝ/ℝ0Þ ¼ hðℝ0/ℝÞ, and
(2) if hðℝ/ℝ0Þ ¼ hðℝ0/ℝ00Þ, then it does not necessarily imply that
hðℝ/ℝ0Þ ¼ hðℝ/ℝ00Þ. This metric is also universal in that it is not bounded
by systemtype/size, and canbe used to examinedifferences in ensembles at any
structural hierarchy (functional groups, amino acids, or secondary structures).

Mathematically, h is a function of the geometrical overlap between
conformational ensembles, ℝ and ℝ0,

h ¼ 1" kℝ X ℝ0 k : (1)

It is normalized, that is, h ˛ ½0; 1Þ, and it takes up a value closer to unity as
the difference between the ensembles increases. kℝ X ℝ0 k is estimated
by solving an inverse machine learning problem. In the traditional sense,
machine learning is used for data classification (49–51)—the classification
function, or machine ðFðrÞÞ, is first trained on a set of instances with
known group identities, and then used for predicting the group identity
of an unclassified instance. In principle, the conformational ensembles ℝ
and ℝ0 can also serve as training data to train a classification function,
FðrÞ, which can, in turn, be used to predict whether an unseen conforma-
tion belongs to ℝ or ℝ0. We have shown that if FðrÞ is constructed and
trained appropriately, then the overlap between ℝ and ℝ0 can be extracted
from FðrÞ (28).

We have also demonstrated that this method works excellently and
without need for any prior data fitting, provided we assume that the under-
lying distributions are Gaussian—the mean absolute error (MAE) between
computed and analytical overlaps is 3.2% (29). The Gaussianity in a distri-
bution, which is a corollary to the central limit theorem, is, however, a valid
assumption only in systems where particles do not interact with each other.
Therefore, deviations can be expected for protein systems that evolve under
the influence of many-body interactions. Nevertheless, the overlap between
two multi-Gaussian distributions, ℝ ¼

P
cifi and ℝ0 ¼

P
c0if

0
i , where fi are

Gaussians and ci are weighting coefficients, is essentially a sum of overlaps
between Gaussian distributions, that is,
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X
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n
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X
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