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Nanomechanics of type I collagen
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Abstract

Type I collagen is the predominant collagen in mature tendons and ligaments, where it gives them their load-bearing mechan-
ical properties. Fibrils of type I collagen are formed by the packing of polypeptide triple helices. Higher-order structures
like fibril-bundles and fibers are assembled from fibrils in the presence of other collagenous molecules and non-collagenous
molecules. Curiously, however, experiments show that fibrils/fibril-bundles are less resistant to axial stress compared to their
constituent triple helices – the Young’s moduli of fibrils/fibril-bundles are an order in magnitude smaller than the Young’s
moduli of triple helices. Given the sensitivity of the Young’s moduli of triple helices to solvation environment, a plausible
explanation is that the packing of triple helices into fibrils perhaps reduces the Young’s modulus of an individual triple helix,
which results in fibrils having smaller Young’s moduli. We find, however, from molecular dynamics and accelerated confor-
mational sampling simulations that the Young’s modulus of the buried core of the fibril is of the same order as that of a triple
helix in aqueous phase. These simulations, therefore, suggest that the lower Young’s moduli of fibrils/fibril-bundles cannot
be attributed to the specific packing of triple helices in the fibril core. It is not the fibril core that yields initially to axial
stress. Rather, it must be the portion of the fibril exposed to the solvent and/or the fibril-fibril interface that bears the initial
strain. Overall, this work provides estimates of Young’s moduli and persistence lengths at two levels of collagen’s structural
assembly, which are necessary to quantitively investigate the response of various biological factors on collagen mechanics,
including congenital mutations, post-translational modifications and ligand binding, and also engineer new collagen-based
materials.
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Introduction

Collagen is the primary constituent of the extracellular matrix of animal connective tissue (1–7). To date, twenty eight differ-
ent types of collagen have been identified in vertebrates and higher invertebrates (4–7). Among these collagen types, type I is
the most abundant in vertebrates. It combines with other molecules in varying ratios to form a variety of tissue scaffolds, such
as basal membranes, ligaments, tendons, skin and blood vessels, where it gives them their load-bearing mechanical properties.

The building block of type I collagen is a 300 nm long triple helix, which is made up of three parallel polypeptide chains
wound around each other. These triple helices assemble to form fibrils. The arrangement of triple helices in a fibril is such that
the N-termini of two axially adjacent triple helices are separated by D = 67 nm and the N-termini of two collaterally adjacent
triple helices are separated axially by 0.54D (8–14). This staggered arrangement creates alternating regions of low and high
protein density along the fibril axis with a repeating unit of length D (Fig. 1). These D-periods are, in fact, signature struc-
tural features of several collagen types, and are visible as alternating dark and light bands in transmission electron microscopy
(TEM) and atomic force microscopy (AFM). Fibrils, in turn, combine with other collagenous and non-collagenous molecules,
such as proteoglycans, to form fibril-bundles and fibers, which then assemble with each other to form tissue scaffolds.
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Figure 1: Structural hierarchy of type I collagen fibril. The fibril is drawn at two different spatial resolutions. While the lower
resolution cartoon highlights the repeating dark and light bands visible in TEM and AFM, the higher resolution cartoon shows
the 2D arrangement of the triple-helices (green rectangles) within a fibril. The higher resolution representation also outlines
three representative crystallographic unit cells of the fibril. Note that a crystallographic unit cell is not a microfibril.

How do the mechanical properties of collagen vary across this structural hierarchy? Table 1 summarizes the mechanical
properties of triple helices and fibrils/fibril-bundles obtained from experiment and molecular dynamics (MD) simulations
(15–26). The first trend we note is that the persistence lengths of triple helices are significantly smaller than those of
fibrils/fibril bundles. This trend reflects the fact that thermal fluctuations bend triple helices over much shorter lengths com-
pared to fibrils/fibril-bundles. This is, nonetheless, expected because triple helices are three orders in magnitude thinner than
fibrils/fibril-bundles. Surprisingly, however, we also note that the Young’s modulus of triple helix, determined by mapping its
mechanics on to an elastic rod, is an order of magnitude larger than the moduli of fibrils and fibril-bundles. This observation
implies that it is easier to stretch fibrils/fibril-bundles compared to triple helices, at least in the limit of small strains. What
explains this differential mechanical response?

We note first that the experiments that report the mechanical properties of fibrils/fibril-bundles, including ours (26), do not
differentiate between fibrils and fibril-bundles. Consequently, the lower Young’s moduli of fibrils/fibril-bundles could either
be due to the packing of fibrils into fibril bundles, and/or due to the packing of triple helices into fibrils. Recent experiments
show that the flexibility of type-I triple helix is sensitive to solvent conditions, and can modulate its Young’s modulus by an
order in magnitude (17, 27). This suggests the possibility that the packing of triple helices into fibrils, a process accompanied
by partial dehydration of triple helices, perhaps reduces the Young’s modulus of individual triple helix, which results in a fibril
having smaller Young’s moduli. It is also conceivable that the interaction between triple helices in a fibril is sufficiently weak
that straining a fibril alters the relative arrangements between triple helices, but does not affect the structures of the individual
triple helices. This could lead to a fibril being less resistant to axial deformation compared to a triple helix.

To explore these possibilities, we first determine using accelerated MD the Young’s modulus of an isolated triple helix
in salt solution. This serves as a control and also assesses the performance of MD against experiment. This is particularly
important because we have demonstrated that the structural organization of triple helices in the fiber diffraction unit cell is
sensitive to the employed MD protocol (28), and the question remains as to how well our protocol predicts the mechanics of
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Table 1: Mechanical properties of type I collagen at different structural levels. The values of Young’s moduli (Y ) marked by
asterisks (⇤) are computed from their reported respective persistence lengths (lp) using the relationship given by Eq. 1. Simi-
larly, the values of lp marked by asterisks are computed from their reported respective Y using Eq. 1. Interconversion between
Y and lp through Eq. 1 requires values of temperature (T ) and radius (r). In cases where temperature was not reported, it is
assumed to be 298 K, and in cases where the radius of the triple helix was not reported, it is assumed to be 0.36 nm.

Structural level r (nm) Y (GPa) lp (nm) Method T (K) Reference

Triple Helix 0.62 2.9 ± 0.12 ⇤83.2 X-ray 293 (15)
– ⇤4.5 14.5 Optical tweezers 298 (16)
– ⇤3.7–7.8 12–25 AFM 298 (17)

0.78 1.3–2.4 – Energy minimization N/A (18)
0.36 ⇤4.2 12.9 Accelerated MD 310 Present work

Collagen-like Triple Helix – 4.8 ± 1.0 ⇤15.3 Steered MD 300 (19)
0.36 7.0 ⇤22.3 Steered MD 300 (20)
0.36 4.0 ⇤12.7 Steered MD 310 (21)
0.35 1.8-2.3 5.1-6.5⇤ MD (Force-extension) 300 (22)

Fibril Core 1.75 2.34 ⇤4.0 ⇥ 103 MD (Constant-strain) 310 Present work

Fibril / Fibril-bundle – 0.43 – SAXS 293 (23)
280–426 0.07-0.17 ⇤0.8–10.7 ⇥ 1011 AFM – (24)
220–570 0.123 ± 0.046 ⇤0.6–24.7 ⇥ 1011 MEMS – (25)
116–200 0.1-0.36 ⇤0.03–1.1 ⇥ 1011 Optical tweezers 298 (26)

isolated triple helices. We then determine the Young’s modulus of the buried core of a fibril. The underlying idea is that if
the Young’s modulus of the buried core is found to be similar to that of fibrils/fibril-bundles obtained from experiment, then
we will conclude that the relatively lower Young’s moduli of fibrils/fibril-bundles can be attributed to the specific packing of
triple helices in the core of a fibril.

Methods

Potential of Mean Force

The potential of mean force, U(R), where R is the end-to-end distance of a triple helix, is determined using well-tempered
metadynamics (29–31). Gaussian hills of height h0 = 2 kJ/mol and width w = 0.2 nm are deposited over R using a scaling
factor s = 6 at regular intervals of 200 integration time steps. Geometrically, R is defined as the distance between the centers
of masses of the backbone atoms of the N- and C-termini of the triple helix fragment.

The N- and C-termini of all three peptides in a triple helix are capped individually, and the peptides are described using the
all atom Amber99sb-ildn force field (28, 32–34). The triple helix is placed in a cubic box containing explicit water molecules
(⇠136K), and water is described using SPC/E parameters (35). NaCl salt concentration is set at 10 mM, and there are 4 extra
Cl� ions compared to Na+ to balance the net charge on the triple helix. Electrostatic interactions are computed using the
particle mesh Ewald scheme (36) with a Fourier grid spacing of 0.1 nm, a fourth-order interpolation, and a direct space cutoff
of 10 Å. van der Waals interactions are computed explicitly for interatomic distance up to 10 Å. Temperature is regulated at
310 K and pressure at 0.1 MPa using extended ensemble approaches (37, 38) and with coupling constants of 1 ps. Bonds in
the peptides are constrained using the P-LINCS algorithm (39), and the geometries of the water molecules are constrained
using SETTLE (40). These constraints permit use of an integration time step of 2 fs. Prior to subjecting the triple helix to
well-tempered metadynamics, the triple helix is subjected to 10 ns of standard MD.

Biophysical Journal 00(00) 1–0



4 Biophysical Journal: Varma et al.

Molecular Dynamics Simulations of Fibril Core

The details of our MD simulation protocol are provided elsewhere (28), and here we provide only the salient points. Since
the resolution of the crystal structure (PDB ID: 3HR2) was insufficient to reveal atomic level details, including side chain
orientations and inter-peptide hydrogen bonds (12, 13), an atomically detailed model was constructed by incorporating the
high resolution crystallographic data of collagen-related peptides (12, 28, 41). The model includes all known hydroxylated
forms of prolines and lysines, but not any glycosyl groups, as their specific sites remain unknown. We leave out all cross links
between triple helices, and this is to allow the packed triple helices sufficient flexibility to rearrange under applied strains.
It should be noted that the computed value of Young’s modulus in the absence of cross links serves as a lower limit. The
overall system contains 70,606 particles, which includes the peptide, explicit water (⇠11 K molecules) and 31 Cl� ions to
counter the positive charge of the peptide. The resulting ratio of Cl� ions and water in the unit cell corresponds, roughly, to
a salt concentration of 150 mM. With the exception of one simulation parameter, namely the pressure coupling scheme, all
the simulation parameters are the same as those used in the MD simulation of the triple helix. In this case, we employ an
anisotropic pressure coupling scheme wherein the components of the virial pressure tensor are regulated separately. While the
diagonal components, �ii, are regulated at a pressure of 0.1 MPa, the non-diagonal components, �i 6=j , are regulated at zero
pressure to emulate a zero-shear condition.

This MD simulation protocol preserves the dimensions of the triclinic unit cell, the gap/overlap ratio of the fibril, and also
the pitch of the constituent triple helix (28). In addition, the average D-band length is D0 = 66.28 ± 0.08 nm, which is in
close correspondence with the values obtained from AFM, TEM and X-ray diffraction studies (8–14).

We use Gromacs v4.5 for all MD simulations (42).

Results and Discussion

Young’s modulus of triple helix

To determine the Young’s modulus of an isolated triple helix, we assume that its thermal fluctuations can be described by
the wormlike chain model. The Young’s modulus (Y ) of the triple helix can then be obtained from the persistence length (lp)
using the relationship (43)

Y = 4kbT lp/⇡r
4, (1)

where, T is the temperature, kb is the Boltzmann constant and r is the radius of the triple helix. The persistence length lp is
obtained by solving numerically the relationship (44),

hRi2 + h�R2i = 2lpLc[1�
lp
Lc

(1� e�Lc/lp)], (2)

where R and Lc are, respectively, the end-to-end distance and the contour length of the triple helix.
To solve Eq. 2 for a triple helix of contour length Lc, we need to determine the averages hRi2 and h�R2i. From a theo-

retical standpoint, these averages can be obtained using any conformational sampling method that is coupled to a temperature
bath. This can, however, be practically challenging when the solvent is described explicitly and when free energy barriers
are large. To circumvent these issues, we compute these averages from the potential of mean force, U(R), a thermodynamic
quantity whose convergence with respect to conformational sampling is tractable. We use U(R) as Boltzmann weights and
determine

hRi =
R
Re�U(R)/kbT dRR
e�U(R)/kbT dR

(3)

and
h�R2i = hR2i � hRi2. (4)

We determine U(R) not for the entire collagen triple helix, whose contour length exceeds 300 nm, but for a fragment
of the triple helix that has a counter length of Lc = 15.3 nm (Fig. 2a). For even such a small fragment, the simulation cell
containing explicit solvent has close to 1/2 million particles. Nevertheless, the length of the fragment is chosen such that it
extends beyond two true pitch lengths of the triple helix – the true pitch of a 7/2 helix spans 21 amino acid triplets, and our
fragment contains 45 amino acid triplets. While the choice of the primary sequence of the fragment can be expected to affect
the computed Young’s modulus, other simulation studies (18, 22) suggest that the effect will not be significant enough to alter
the conclusions of this study.

Fig. 2b shows the U(R) determined using well-tempered metadynamics (29–31) where conformational sampling is con-
ducted for 5⇥107 MD steps. Using this U(R) profile in Eq. 3, we find that hRi = 12.78 nm, which corresponds roughly to the
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position of the lowest energy in U(R). Using Eq. 4, we find that h�R2i = 0.04 nm2. Convergence is estimated in three ways.
First, we track the dynamic hill height in metadynamics (Fig. 2b inset), which does not take up a value greater than 0.001
kJ/mol during the entire second half of the trajectory, and it continues to decease asymptotically, as expected theoretically
(45). Second, we compute hRi and h�R2i using U(R) profiles from shorter and longer metadynamics trajectories (29). The
U(R) profiles from these trajectories are also shown in Fig. 2b. The shorter trajectory is comprised of 10% fewer MD steps
(4.5 ⇥ 107 MD steps) and yields hRi = 12.69 nm and h�R2i = 0.04 nm2. The longer trajectory, which is comprised of
10% more MD steps (5.5 ⇥ 107 MD steps), yields hRi = 12.74 nm and h�R2i = 0.04 nm2. hRi computed from the three
trajectory lengths are within 1% of each other, with no correlation between the averages and trajectory length. Finally, we
compute the averages following a time-independent reconstruction of U(R) (46), and find hRi = 12.61 nm, which is also
within 1% of the values obtained from the unweighted U(R) profiles.
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Figure 2: (a) Representative 45 residue fragment of the collagen molecule. The backbone atoms are drawn as spheres
and the side chains are drawn as sticks. The primary sequences of the two ↵1 chains are Ph

100GMKh...PRGL144 and
G98LPhG...MGPR142, and the primary sequence of the ↵2 chain is L92PhGF...GAKG136. The ’h’ superscript over
selected residues refers to their post-translationally modified hydroxylated forms, and the subscript on the terminal residues
of the chains matches their specific numbers in the primary sequence taken from the fiber diffraction structure of the fibril
(PDB ID: 3HR2). Note that the residue numbers in the three chains are different, and this is because the three chains in
the triple helix are staggered. (b) Potential of mean force (U(R)) of this fragment evaluated as a function of its end-to-end
distance (R) from well-tempered metadynamics. The solid line is an estimate from a trajectory comprising of 5 ⇥ 107 MD
steps (100 ns of metadynamics time), and the shaded area indicates a range bounded by two estimates, one from a smaller
trajectory comprising of 4.5 ⇥ 107 MD steps and the other from a longer trajectory comprising of 5.5 ⇥ 107 MD steps. The
inset shows the time evolution of the dynamic hill height (h).

Numerical solution of Eq. 2 using hRi = 12.78 nm and h�R2i = 0.04 nm2 yields lp = 12.85 nm.Plugging this value of
lp in Eq. 1, and using r = 0.36 ± 0.01, which is one half of the average width of the triple helix (28) in the well-tempered
metadynamics simulation, yields a corresponding Y = 4.2 GPa. Decreasing hRi by 1% yields lp = 12.09 nm and Y = 3.95
GPa, and increasing hRi by 1% yields lp = 13.70 nm and Y = 4.50 GPa. These values of persistence lengths and Young’s
moduli fall within the range of the most recent estimates from AFM and optical tweezer experiments (Table 1). We also note
that while there are other simulation-based studies of the mechanical properties of collagen-like triple helices (Table 1), the
Young’s moduli in all, but one, of those studies are obtained using steered MD, where decoupling the effects of kinetics from
static thermodynamic properties is challenging (47, 48).

Young’s modulus of fibril core

We determine the Young’s modulus of the fibril core from its stress-strain relationship. To emulate the fibril core, we simulate
the crystallographic unit cell of the fibril (12, 13) under periodic boundary conditions. The crystallographic unit cell, which
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is the smallest repeating unit in a fibril, is a triclinic cell whose longest lattice constant is equal to the D-band length of the
fibril. The unit cell contains exactly one triple helix wrapped 4.46 times about the fibril axis, that is, the length of the triple
helix L = 4.46D (Fig. 1). Such a periodic system represents an infinitely wide and infinitely long fibril that lacks an interface
with bulk solvent and, therefore it represents the buried core of a fibril. We note that simulating a single crystallographic unit
cell under periodic conditions is an approximate representation of the buried core in that it does not incorporate aperiodic
variations across multiple unit cells. Nevertheless, since the unit cell we employ is, in fact, the smallest periodic repeating unit
observed in fiber diffraction studies (12, 13), we consider it as an appropriate initial model of the fibril core.

The stress-strain relationship is obtained by simulating the unit cell after straining it along the fibril axis (✏k > 0) and
recording the resulting stress �k (Fig. 3a). Specifically, we carry out five separate MD simulations of the unit cell, and in each
simulation, the lattice constant parallel to the fibril axis (or the D-band length) is held fixed at a length D = D0(1 + ✏k).
The details of our MD simulation protocol are provided elsewhere (28), and are also described briefly in the Methods section.
The evolution of the stress as a function of simulation time is shown in Fig. 3b. We find that in all cases stress-equilibration
requires > 150 ns of equilibration time. Assuming that these strains are in the linear regime, we obtain the Young’s modulus
using Hooke’s law, Y = (h�ki��0)/✏k, where �0 = 0.1 MPa (Fig. 3c). The values of h�ki are obtained by averaging �k over
the final 20 ns of each trajectory. A linear fit between (h�ki � �0) and ✏k yields Y = 2.34 GPa. Inserting this value in Eq. 1
and taking r =

p
b⇥ c/⇡ = 1.75 nm, where b and c are the two smallest lattice constants of the unit cell under zero-stress

condition, yields a persistence length lp = 4.0⇥ 103 nm. The values of the unit cell vectors b and c are taken from our earlier
work (28).
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Figure 3: Constant-strain MD simulations of the crystallographic unit cell under periodic boundary conditions. (a) Snapshot
of the MD simulation illustrating the unit cell (blue box), the strained lattice constant |a| = D0(1+ ✏k), and the component of
the virial stress tensor parallel to the fibril axis, �k. (b) Time evolution of the �k in two different constant-strain simulations,
one in which ✏k = 0.011, and the other in which ✏k = 0.047. The vertical lines represent fluctuations in �k observed over
2 ns time intervals. (c) Stress-strain relationship estimated for five different strain values. h�ki are averages over the final 20
ns of the constant-strain simulations, and the standard errors are obtained via block averaging. (d) Relationship between the
fractional change in the length of the triple-helix (L), and the applied strain, estimated from the final 20 ns of constant-strain
simulations. L0 is the length of the triple helix in the zero-strain simulation. (e) Relationship between the gap fraction and the
applied strain, estimated from the final 20 ns of constant-strain simulations.

Analysis of the equilibrated portions of the MD simulations reveals that the fractional increase in triple helix length is
not correlated linearly with the applied strain (Fig. 3d), implying that straining also induces slippage between triple helices.
For the maximum applied strain, the gap fraction, estimated from axial mass densities (28), increases by 5% from 0.58 to
0.63 (Fig. 3e). Such slippage is less likely to occur under physiological conditions when the triple-helices are cross-linked.
Including cross-linking in the model will only increase the Young’s modulus of the fibril core, and therefore, the computed
Young’s modulus serves as a lower limit. Nevertheless, despite the slippage, the computed Young’s modulus of the fibril
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core is comparable to the Young’s modulus of a triple helix and is an order in magnitude larger than the Young’s moduli of
fibrils/fibril-bundles (Table 1).

Conclusions

Results from our simulations suggest that the smaller Young’s moduli of fibrils/fibril-bundles relative to that of their con-
stituent triple helices cannot be attributed to the specific packing of triple helices in the fibril core. Therefore, it is not the
fibril core that yields initially to axial stress. Rather, it must be the portions of the fibril exposed to the solvent and/or the
fibril-fibril interface that get strained in response to the initial stress. It is conceivable that the fibril portion exposed to the
solvent is packed loosely compared to the fibril core and may yield to relatively smaller axial stresses. It is also plausible
that the fibril-fibril interface slips first in response to applied axial stresses. As such, the packing of fibrils into fibril-bundles
is facilitated by the binding of non-collagenous molecules, such as proteoglycans, which are expected to interact with fibrils
weakly compared to the interaction that holds triple helices together within fibrils (5). This explanation is supported by our
recent experiments (26), which show broad distributions in both the Young’s moduli (0.1–0.36 GPa) and the diameters (116-
200 nm) of type I collagen fibril/fibril-bundles extracted from a single tissue-type. It is unlikely that the organization of the
fibril core varies within a tissue-type (5), and it may be that the distribution in Young’s moduli is systematically related to the
distribution in the sizes fibrils/fibril-bundles, or the packing of the fibrils within fibril bundles. Indeed, statistical modeling of
inter-fibrillar interactions suggests that the arrangement of inter-fibrillar cross-link-forming sites contributes to the broadening
of the denaturation transition in fibrillar collagen (49). Additionally, studies based on a wormlike bundle model suggest that
competition between the elastic properties of the filaments and those of the crosslinks leads to renormalized effective bend and
twist rigidities, at least for microtubule-like or actin-like filament bundle geometries (50). Further study is, however, required
to establish causality, and toward that end, this work lays the foundation by providing converged estimates of Young’s moduli
and persistence lengths at two levels of collagen’s structural hierarchy. In general, this work provides the necessary baseline
(or control) to quantitively investigate the effect of various biological factors on the mechanical properties of collagen, such
as congenital mutations, post-translational modifications and ligand binding (1–7), and also engineer new collagen-based
materials (51).
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List of Figures

1 Structural hierarchy of type I collagen fibril. The fibril is drawn at two different spatial resolutions. While the
lower resolution cartoon highlights the repeating dark and light bands visible in TEM and AFM, the higher
resolution cartoon shows the 2D arrangement of the triple-helices (green rectangles) within a fibril. The higher
resolution representation also outlines three representative crystallographic unit cells of the fibril. Note that a
crystallographic unit cell is not a microfibril. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 (a) Representative 45 residue fragment of the collagen molecule. The backbone atoms are drawn as
spheres and the side chains are drawn as sticks. The primary sequences of the two ↵1 chains are
Ph
100GMKh...PRGL144 and G98LPhG...MGPR142, and the primary sequence of the ↵2 chain is

L92PhGF...GAKG136. The ’h’ superscript over selected residues refers to their post-translationally modified
hydroxylated forms, and the subscript on the terminal residues of the chains matches their specific numbers
in the primary sequence taken from the fiber diffraction structure of the fibril (PDB ID: 3HR2). Note that
the residue numbers in the three chains are different, and this is because the three chains in the triple helix
are staggered. (b) Potential of mean force (U(R)) of this fragment evaluated as a function of its end-to-end
distance (R) from well-tempered metadynamics. The solid line is an estimate from a trajectory comprising of
5⇥ 107 MD steps (100 ns of metadynamics time), and the shaded area indicates a range bounded by two esti-
mates, one from a smaller trajectory comprising of 4.5⇥ 107 MD steps and the other from a longer trajectory
comprising of 5.5⇥ 107 MD steps. The inset shows the time evolution of the dynamic hill height (h). . . . . 5

3 Constant-strain MD simulations of the crystallographic unit cell under periodic boundary conditions. (a) Snap-
shot of the MD simulation illustrating the unit cell (blue box), the strained lattice constant |a| = D0(1 + ✏k),
and the component of the virial stress tensor parallel to the fibril axis, �k. (b) Time evolution of the �k in two
different constant-strain simulations, one in which ✏k = 0.011, and the other in which ✏k = 0.047. The verti-
cal lines represent fluctuations in �k observed over 2 ns time intervals. (c) Stress-strain relationship estimated
for five different strain values. h�ki are averages over the final 20 ns of the constant-strain simulations, and the
standard errors are obtained via block averaging. (d) Relationship between the fractional change in the length
of the triple-helix (L), and the applied strain, estimated from the final 20 ns of constant-strain simulations. L0

is the length of the triple helix in the zero-strain simulation. (e) Relationship between the gap fraction and the
applied strain, estimated from the final 20 ns of constant-strain simulations. . . . . . . . . . . . . . . . . . . 6
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List of Tables

1 Mechanical properties of type I collagen at different structural levels. The values of Young’s moduli (Y )
marked by asterisks (⇤) are computed from their reported respective persistence lengths (lp) using the rela-
tionship given by Eq. 1. Similarly, the values of lp marked by asterisks are computed from their reported
respective Y using Eq. 1. Interconversion between Y and lp through Eq. 1 requires values of temperature (T )
and radius (r). In cases where temperature was not reported, it is assumed to be 298 K, and in cases where the
radius of the triple helix was not reported, it is assumed to be 0.36 nm. . . . . . . . . . . . . . . . . . . . . . 3
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